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Dynamical interference in the vibronic bond breaking
reaction of HCO
Shanyu Han1,2*, Xianfeng Zheng3,4*, Steve Ndengué5, Yu Song4, Richard Dawes5†,
Daiqian Xie1,6,7†, Jingsong Zhang4†, Hua Guo2†

First-principles treatments of quantum molecular reaction dynamics have reached the level of quantitative ac-
curacy even in cases with strong non–Born-Oppenheimer effects. This achievement permits the interpretation
of puzzling experimental phenomena related to dynamics governed by multiple coupled potential energy
surfaces. We present a combined experimental and theoretical study of the photodissociation of formyl radical
(HCO). Oscillations observed in the distribution of product states are found to arise from the interference of
matter waves—a manifestation analogous to Young’s double-slit experiment.
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INTRODUCTION
The wave nature of quantum particles gives rise to interference
phenomena, which are analogs of the optical interference in Young’s
double-slit experiment. When a particle reaches a destination via
more than one path, the phase associated with each path is gener-
ally different. As the observable intensity is the squared sum of all
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contributing amplitudes, the phase differences lead to oscillatory
patterns in intensity (1). While such wave-like behaviors are well
known in physics, manifestations of interference in molecular reac-
tions are rare, as they require distinct pathways with nearly equal
probabilities. One such example is the inelastic scattering of NO by
Ar (2, 3), where a Dj = even propensity can be attributed to the weakly
broken symmetry of the diatom (4). Various forms of interferences
have also been found in reactive scattering (5–7). More closely related
to the current work is the photodissociation of water in its ~B band,
where nonadiabatic transitions between the ~B

1
A′ and ~X

1
A′ states of

H2O near two conical intersections (HOH andHHO) provide distinct
dissociation pathways leading to the same OH + H products, mani-
fested by oscillations in the OH rotational state distribution (8). Here,
we describe observations of interference in another chemical process,
governed by Renner-Teller (RT) electronic state degeneracy at linear-
ity, the photodissociation of HCO. In this case, photoexcitation from
the ground electronic state (with a bent equilibrium geometry) to the
lowest excited electronic state (with a linear equilibrium geometry)
gives rise to a strong bending excitation. The two electronic states
are degenerate at linearity, and once a nonadiabatic transition is made
ay 10, 2019
Fig. 1. Surface plots of the coupled X̃ and Ã states of the formyl radical relevant to photodissociation dynamics. The CO bond distance is held fixed (rCO = 1.18 Å),
while the plots illustrate the behavior of the PESs as a function of R and g (Jacobi coordinates, angstroms, and degrees). Seams of degeneracy are noticeable for
collinear geometries of HCO (0°) and HOC (180°). The region of the seam for collinear HCO (g = 0) most relevant to the dynamics is highlighted by a red oval. Top
and bottom panels on the right show rotated perspectives of the same plot.
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to the ground state, dissociation (to CO+H) occurs with considerable
rotational excitation of CO.Moreover, the complex topography of the
ground electronic state leads to interference between different paths to
the same rotational product states, seen as oscillations in the CO ro-
tational distribution.

The formyl radical (HCO) is an important combustion inter-
mediate, which serves as the primary source of H in the chain initia-
tion of hydrocarbon combustion. It also plays important roles in
atmospheric and interstellar chemistry. The ~A2A′′←~X 2A′ absorp-
tion band consists of a long progression of diffuse features, stemming
from the bent-to-linear transition (9). Interestingly, the linear Ã2A′′
state and bent ~X 2A′ state become degenerate at linearity as an RT 2P
pair (10), which is subject to a type of non–Born-Oppenheimer cou-
pling between the molecular rotational angular momentum (K) and
the electronic angular momentum (L) (11). The potential energy
Han et al., Sci. Adv. 2019;5 : eaau0582 2 January 2019
surfaces (PESs) of these two states (12) are shown in Fig. 1, in which
the seams of degeneracy for linear geometries are visible. For K > 0,
this vibronic coupling facilitates rapid predissociation of the Ã2A′′
vibronic levels above the H + CO dissociation asymptote (13, 14).
The CO product from HCO (Ã2A′′) photodissociation has been de-
tected by Houston and coworkers and has been found to have rather
high (up to j = 50) rotational excitation, while its vibrational excita-
tion depends on the initial CO mode excitation in the parent mole-
cule (15–18). The product energy disposal can be rationalized by the
anisotropy of the ground ~X 2A′ state PES, which has an equilibrium
valence bond angle of q = ~125°. The PES thus exerts a strong torque
on the CO fragment as it emerges from the collinear degeneracy
seam, as demonstrated by previous dynamical studies of the dissoci-
ation (19–21).

We report here a new investigation of the dynamics and CO
internal state distributions, recorded following photoexcitation of
HCO at several wavelengths.
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RESULTS
In Fig. 2, the calculated absorption spectrum is shown for the 202
state of HCO (~X 2A′), which has a substantial population (P = 0.18,
assuming Boltzmann) at the estimated experimental temperature of
20 K. In agreement with experiments (9, 13), the spectrum is domi-
nated by a pure bending progression, denoted as (0, n′K′2 , 0). Strictly
speaking, because of the Coriolis coupling, K′ is not a good quan-
tum number, but it can still be used to assign the peaks. It is apparent
that the resonance width increases drastically with K′ because of
increased RT coupling (10). As shown in table S1, the calculated tran-
sition frequencies and linewidths of the resonances are in excellent
agreement with the existing experimental data, further validating
the PESs.

In Fig. 3, the measured CO (v = 0) product rotational state dis-
tributions following excitation to the HCO (Ã2A′′) (0,101,0) and
(0,121,0) states are compared with the calculated ones. The oscilla-
tory structure in the experimental distributions noted previously
by Houston and coworkers (15–18) is unambiguously established
and extended to the low-j region owing to the increased and uniform
Fig. 2. Calculated absorption spectrum of the 202 state (the J′ label refers to
the upper state in the transition) of HCO. The extremely close agreement be-
tween calculated and recorded positions and widths is given in table S1. a.u.,
atomic units.
 2019
Fig. 3. Comparison of calculated and measured CO rotational distributions. The observed oscillatory and highly excited inverted product distributions are closely
reproduced in the calculations. Simulated distributions for pure initial states (or lower beam temperatures) are even more oscillatory (see the Supplementary Materials).
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sensitivity of the high-n Rydberg-atom time-of-flight (HRTOF) tech-
nique and the CO background free product detection. The simulated
product distributions obtained as thermal averages over initial rota-
tional states (assuming 20 K beam temperature) are in very good
agreement with the experiment. Any remaining differences between
the measured and calculated distributions are most likely due to the
strong sensitivity of the interference effect to subtleties of the PESs
as well as to the experimental conditions. In fig. S7, the individual (ini-
tial rotational state) components are given. There, it can be seen that
the rotational state distributions calculated from pure parent states are
significantly more oscillatory than the experimental ones recorded at
~20 K, similar to those reported in earlier calculations (20). The less
pronounced oscillation mainly reflects averaging over the initial rota-
tional states but perhaps also contributions from broadening mecha-
nisms (convolution of computed spectra with assumed linewidth
parameters often leads to more similar comparisons).
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DISCUSSION
Let us now focus on the oscillations of the CO rotational state dis-
tributions. To gain insight into the dynamics and possible interference
effects, we analyze trajectories on the ground-state PES originating
from linearity where the RT coupling takes place. For this purpose,
the (0,121,0) state is chosen. In Fig. 4 (top panel), a few two-dimensional
representative trajectories are shown on the ~X 2A′ state PES, in which
the C-O distance is fixed at its equilibrium geometry (rCO = r0 = 1.18Å).
This is a reasonable approximation as CO vibration is nearly a spectator
in the dissociation. Tomimic theRTdissociation process, all trajectories
were started at linearity with differentR0 values and zeromomentum in
the R direction. The available kinetic energy is exclusively placed in the
angular coordinate: j0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrr20ðE � VÞ

p
. It is clear from the figure

that typical trajectories are first attracted to the HCO well but are sub-
sequently deflected by the isomerization barrier between HCO and
HOC and then eventually dissociate. Other details of the trajectory cal-
culations can be found in the Supplementary Materials.

Although such an oversimplified classical model is not expected to
generate quantitative results, the trajectories are useful nonetheless to
shed light on the dissociation dynamics, particularly the interference
effect, as explained below. It is interesting to note that various trajec-
tories arrive at the same final rotational angular momentum, despite
the fact that they sampled different parts of the PES and hence arrive
out of phase. To better illustrate this effect, the excitation function,
namely, the dependence of the final CO rotational quantum number
on the initial R0 position, is plotted in Fig. 4 (middle panel). It is clear
from the figure that the excitation function has a turning point near
R0 ~ 3.6 atomic units, which is well within the range of the (0,121,0)
wave function (as also shown in the same figure). The presence of this

turning point
�

∂jCO
∂R0

¼ 0
�
suggests a singularity in the classical rotation-

al excitation function. In this so-called rotational rainbow effect, trajec-
tories with different initial positions lead to the same final rotational
state (22). The quantum mechanical equivalent of the classical rainbow
effect manifests in oscillations in the CO rotational state distribution,
resulting from the constructive and destructive interference among the
corresponding “quantum trajectories” because of the different dynami-
cal phases associated with them (6). Although absent in the classical
product rotational state distribution, the interference effect can be seen
in the corresponding wave function in Fig. 4 (bottom panel), where
Fig. 4. Insight into the origin of quantum interference in the reaction prod-
uct distribution is obtained by a comparison of rigorous quantum scattering
calculations with quasi-classical trajectories (for details of the calculations,
see the main text and the Supplementary Materials). Bottom: Interference
fringes are seen in the quantum wave function as it leaves the molecular region,
moving toward the asymptotic product channels. Top and middle: Illustration of
how a rotational rainbow effect is predicted as classical trajectories with different
phases contribute to the same CO product states labeled by j’s. Energies in the
top panel are relative to the minimum on the ground electronic state. The square
of the upper-state wave function provides the weight of the coordinate R (initially at
R0). The Jacobi coordinates are used in which r and R denote the C-O distance and
distance between H and the CO center of mass, while g is the enclosing angle.
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waves emanating from different sources interfere as manifested by
nodes. The interferences eventually lead to the oscillatory CO rota-
tional state distribution in Fig. 3.

The interference effect reported here differs from that observed in
the photodissociation of H2O(~B) (8) because there, the interference is
between trajectories emanating from the HOH and HHO conical in-
tersections. In the present case, on the other hand, the interference
effect stems from the same source (RT coupling at linearity). Similar
to the recently discussed scenario found in the H + D2 reactive
scattering (6), these interference effects can all be traced back to the
features on an adiabatic PES, which dictate the nuclear dynamics.

To summarize, we report quantum state-to-state dynamics in a
prototypical system in which observed oscillations in the product-state
distribution are attributed to an interference effect stemming from
unique features on the ground-state PES of the system. As a result, these
interference effects are exquisitely sensitive to the PES and thus can be
used to probe dynamically important regions of the reactive PES.
 on M
ay 10, 2019

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

MATERIALS AND METHODS
Experimental
The HRTOF technique (23–27) was used to obtain the H + CO
product center-of-mass (CM) translational energy and angular dis-
tributions. A pulsed HCO beam was generated by photolyzing a ~2%
mixture of acrolein in Ar with the 193-nm radiation of an ArF exci-
mer laser focused in front of the pulse nozzle. The HCO radicals
produced were entrained in the molecular beam and subsequently
cooled (to ~20 K) by supersonic expansion. The radical beam was col-
limated and then crossed with the visible photolysis radiation from a
Nd:YAG pumped dye laser (defined here as the photolysis laser). This
photolysis laser radiation was slightly focused and properly delayed
with respect to the 193-nm radical production laser but preceded
the H-atom product probe lasers; its polarization can be rotated by a
Fresnel-Rhomb achromatic l/2 plate for product angular distribution
studies. Hydrogen atoms produced from photodissociation were first
excited to the 22P level by a 121.6-nm Lyman-a (L-a) radiation gen-
erated by tripling a 364.7-nm dye-laser output in Kr (values given are
vacuum wavelengths). The H atoms were further excited to a high-n
Rydberg level by the 366.2-nm output of another dye laser (Rydberg
probe laser). A small fraction of the radiatively metastable Rydberg
atoms drifted with their nascent velocities to a microchannel plate de-
tector that was perpendicular to the molecular beam, and were detected
as ions after being field ionized in front of the detector. The nominal
flight length was 37.1 cm. The accumulated H-atom TOF spectra re-
presented 50,000 to 100,000 laser firings. Because the HRTOF tagging
technique gives high resolution and uniform detection sensitivity for
the kinetic energy of the H fragment and was rid of the CO
background interference, the observed CO rotational-vibrational state
distributions were well resolved and extended to the low-j states
and can be more reliably interpreted than those reported previously
(15–18). It is clear from these experimental data that the CO rota-
tional state distributions exhibit pronounced and reproducible os-
cillations in nascent product states, extending through the low-j
excitation range (see Fig. 3). More details of the experiments and
results are provided in the Supplementary Materials.

Theoretical
To understand these oscillatory features, we performed full-dimensional
wave packet studies. While ab initio ground-state PESs of this system
Han et al., Sci. Adv. 2019;5 : eaau0582 2 January 2019
have been reported by several groups (28–30), fully coupled PESs of
the lowest few electronic states are rare (20, 31). The results reported
here were obtained on the most recent coupled PESs determined from
high-level ab initio calculations (12), proven to be considerably more
accurate than the previous PESs (20). More details of these calcula-
tions are provided in the Supplementary Materials. Briefly, the RT
coupling was treated using the theoretical approach of Petrongolo
(32) and Goldfield et al. (19), as implemented in our recent work
(33). The strong Coriolis coupling was included explicitly while ne-
glecting spin-orbit coupling. The photoexcitation was simulated using
the Condon approximation by exciting the thermally populated low-
lying rotationally excited but vibrationally cold eigenfunctions (labeled
JKaKc) from the ground ~X 2A′ electronic state PES, up onto the Ã2A′′
state PES according to rigorous selection rules (the use of integer labels
for J in this spin doublet system is due to the neglect of spin-orbit
coupling) (34). They were then propagated on both coupled electronic
states using the Chebyshev propagator (35) until reaching the H + CO
dissociation asymptote, where the CO rotational-vibrational state
distributions were determined by projecting the wave packet onto
asymptotic product-state bases on the ~X 2A′ state PES (36).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/1/eaau0582/DC1
Section S1. Experimental
Section S2. Electronic structure and PES
Section S3. Quantum dynamics
Section S4. Classical trajectory calculations
Table S1. Comparison of the calculated and measured (5) positions and widths of resonances.
Fig. S1. Resonance enhanced multiphoton ionization spectrum of the HCO
B̃2A′ð0; 0; 2Þ← X̃2A′ð0; 0; 0Þ transition.
Fig. S2. H-atom photofragment yield spectrum of the HCO radical as a function of photolysis
excitation wavelength around the Ã2A″(0; 121; 0)← X̃2A′(0,00,0) transition.
Fig. S3. CM translational energy distributions P(ET,q)’s and anisotropy parameter b of the H +
CO products from photodissociation of the Ã2A″(0,121,0) vibronic state.
Fig. S4. CM translational energy distributions P(ET,q)’s and anisotropy parameter b of the H +
CO products from photodissociation of the Ã2A″(0,101,0) vibronic state.
Fig. S5. Internal energy and rotational state distributions of the CO (X1S+, u = 0) product from
photodissociation of the Ã2A″ vibronic states.
Fig. S6. The convergence of the X and A states toward their collinear degeneracy is shown at
the minimum of the seam [adapted from (12)].
Fig. S7. Simulated CO product distributions.
Fig. S8. Plot of typical trajectories shown over the contours of the ground-state PES in the
plane with CO distance fixed.
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