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ABSTRACT
We discuss the details of a time-independent quantum mechanical method and its implementation for full-dimensional non-reactive scat-
tering between a closed-shell triatomic molecule and a closed-shell atom. By solving the time-independent Schrödinger equation within the
coupled-channel framework using a log-derivative method, the state-to-state scattering matrix (S-matrix) can be determined for inelastic
scattering involving both the rotational and vibrational modes of the molecule. Various approximations are also implemented. The ABC+D
code provides an important platform for understanding an array of physical phenomena involving collisions between atoms and molecules.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0137628

I. INTRODUCTION

Gas phase collisions involving atoms and molecules are respon-
sible for many important physical phenomena, such as reactions
and energy transfer.1 The cross sections and rate coefficients for
energy transfer are extensively used in many fields, such as modeling
of combustion,2 interstellar media,3 and atmospheres.4 An accurate
description of the collision dynamics requires a quantum mechan-
ical treatment because of quantum effects such as discrete internal
energy levels, tunneling, and collision resonances. These quan-
tum effects are particularly important and sometimes dominant in
cold and ultracold collisions, which have attracted much attention
in recent years, thanks to technological advances.5–11 Significant
progress has been made in quantum scattering theory for both
non-reactive12,13 and reactive collisions.14–21 However, there still
exist significant gaps in our ability to describe scattering dynamics.
One such case is the full-dimensional treatment of the non-reactive

scattering involving polyatomic molecules in cold and ultracold
conditions.

At the state-to-state level, scattering is fully described in quan-
tum mechanics by the so-called state-to-state scattering matrix
(S-matrix),22 which can be used to compute the experimentally
observable differential and integral cross sections. There are
two main approaches to computing the S-matrix.15,23 The
time-independent (TI) approach solves the time-independent
Schrödinger equation using the so-called coupled-channel (CC)
approach in which the scattering wavefunction is expanded in terms
of a molecular basis. By solving the CC equation along the scat-
tering coordinate with appropriate boundary conditions, elements
of the entire S-matrix can be extracted. Because of the necessity
of matrix inversion, the TI approach scales as N3, where N is the
dimensionality of the system.24 The alternative is the wave packet
(WP) approach, which is based on solving the time-dependent
Schrödinger equation25 or its surrogates.26–29 The WP approach is
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an initial value problem, which scales as N2, and in favorable cases
as N log N, because of the necessary matrix–vector multiplication.
As a result, the WP approach is typically more efficient and has been
widely used in characterizing quantum reactive and non-reactive
scattering.18,20,21,30 However, the WP approach is difficult to con-
verge at low collision energies due to the long de Broglie wavelength
along the scattering coordinate. Consequently, TI is generally con-
sidered as the ideal method for treating scattering under cold and
ultracold conditions.8,11

For non-reactive scattering involving four atoms, there are a
few existing software packages. MOLSCAT31 and HIBRIDON32 both
work within the rigid rotor approximation, although the former
can handle vibrating diatoms. The latter pays special attention to
open-shell cases (for extension to vibrating diatoms in atom–diatom
scattering see Ref. 33). None is capable of describing vibrationally
inelastic scattering involving triatoms. On the other hand, TwoBC34

and our own code (AB+CD)35 are full-dimensional codes but are only
applicable to diatom−diatom (2 + 2) scattering. Recently, reduced-
dimensional (4D) quantum scattering studies of the ro-vibrational
relaxation in the H2O + He,36 H2O + H,37 and CO2 + He systems38

have been reported. However, there has been no full-dimensional
TI code for triatom–atom (3 + 1) systems, until recently when
we reported the algorithm and applications.39 In this publication,
details of the implementation and information on how to execute
the ABC+D code are provided.

II. ALGORITHM
A. Coordinates and Hamiltonian

For a triatom-atom system (ABC+D), we choose to work on
the coordinates proposed by Brocks, van der Avoird, Sutcliffe, and
Tennyson (BAST),40 depicted in Fig. 1. The z axis of the dimer-
fixed (DF) frame is along the inter-monomer vector R⃗, which is
specified by two Euler angles (α, β) with respect to the space-fixed
(SF) frame. On the other hand, the orientation of the monomer-
fixed (MF) frame attached to monomer ABC is given by three Euler
angles (αM, βM, γM). Since the potential energy operator (PEO) is
independent of αM, we set αM = 0, βM ≡ θ2, and γM ≡ ϕ, as shown in
Fig. 1. The triatomic monomer ABC is described by Radau coordi-
nates q ≡ (r1, r2, θ1),41 which have the advantage that the AB2 type
of triatoms can be treated with proper symmetry adaption. In this
coordinate system, the exact kinetic energy operator (KEO) has been
worked out,40 but the expression is not given here due to space
limitation.

Atomic units (h̵ = 1) are assumed throughout the manuscript
as well as in the ABC+D code unless specifically pointed out. Here, we
ignore the electronic and spin quantum numbers in both collision
partners. The total nuclear Hamiltonian for scattering between ABC
and D is written as

Ĥ = −
1

2μ
∂2

∂R2 +
(J − j2)

2

2μR2 + ĥABC(j2, q) + ΔV(R, r1, r2, θ1, θ2, ϕ)
(1)

in which μ ≡ mABCmD
mABC+mD

is the reduced mass between the two col-
lision partners and ΔV(R, r1, r2, θ1, θ2, ϕ) ≡ Vtot(R, r1, r2, θ1, θ2, ϕ)
− VABC(r1, r2, θ1) is the interaction PEO, where V tot is the total PEO
of the ABC+D system and VABC is that of monomer ABC. Here, j2 is
the rotational angular momentum of ABC, which is coupled with the

FIG. 1. The BAST coordinates (R, r1, r2, θ1, θ2, ϕ). (XDF, YDF, ZDF) labels the axes

of DF frame, while (xMF, yMF, zMF) labels the MF frame. Note that zMF is along
Ð→
EB

and yMF is along r⃗1 × r⃗2. The origin O is the center of mass of monomer ABC and
E is the Radau canonical point of monomer ABC.

Ð→
EB is the cross line of XZ plane

of the DF frame and the xz plane of the MF frame.

orbital angular momentum L to yield the total angular momentum
J = j2 + L. The Hamiltonian of monomer ABC is

ĥABC = ĥ1 + ĥ2 + T̂vr + Vres, (2)

where the one-dimensional (1D) reference Hamiltonians are

ĥ1(r1) = −
1

2mA

∂2

∂r2
1
+ V1(r1),

ĥ2(r2) = −
1

2mC

∂2

∂r2
2
+ V2(r2).

(3)

The 1D reference PEOs are obtained from VABC, with other degrees
of freedom fixed at, for example, equilibrium,

V1(r1) = VABC(r1, r2 = r2,eq, θ1 = θ1,eq),
V2(r2) = VABC(r1 = r1,eq, r2, θ1 = θ1,eq).

(4)

The residual PEO is thus defined as Vres(r1, r2, θ1) = VABC
(r1, r2, θ1) − V1(r1) − V2(r2). The ro-vibrational KEO T̂vr for a tri-
atomic molecule in the Radau coordinates can be found in Ref. 42,
so not given here.

B. Coupled-channel equations
In the time-independent coupled-channel (TICC) approach,

the scattering wavefunction is expanded in terms of a basis set and
the time-independent Schrödinger equation is solved numerically by
propagating on a grid along the R coordinate, using, for example,
the log-derivative (LogD) method.43,44 Unlike the diatom–diatom
case where the ro-vibrational states of the diatoms represent a nat-
ural choice, the optimal selection of the basis functions in the
atom–triatom collision is the key to render the calculations efficient.
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We choose to implement the CC approach for non-reactive
scattering between ABC and D by expanding the total scatter-
ing wavefunction in terms of the eigenfunctions of ĥABC, or the
contracted basis,

ΨJMε
= ∑

η
FJε

η (R)∣η; JMε⟩, (5)

where η ≡ (j2tK) is the collective index for an asymptotic channel
and t is defined below. The contracted basis satisfies ĥABC∣η; JMε⟩
= Eint,η∣η; JMε⟩, with Eint,η as the internal energy of the ηth channel.
Substituting Eqs. (1) and (5) into the time-independent Schrödinger
equation leads to the CC equations

(
d2

dR2 + k2
η)FJε

η = ∑
η′
(2μV Jε

η′ ,η +
1

R2 UJε
η′ ,η)FJε

η′. (6)

Here, the channel wave vector k2
η = 2μEc,η is defined with the cor-

responding collision energy Ec,η = E − Eint,η, where E is the total
energy. The construction of the basis, the evaluation of the centrifu-
gal matrix U and interaction potential matrix V, and the numerical
solution of the CC equations using the LogD method are discussed
below.

C. Primitive basis
We first define an unsymmetrized primitive basis set in a direct

product form, from which all basis functions are assembled. For the
angular part, it is given in an uncoupled form

∣ j1Ωj2K; JM⟩ ≡ ∣JMK⟩∣ j2KΩ⟩∣ j1Ω⟩, (7)

where

⟨α, β, 0∣ JMK⟩ ≡

√
2J + 1

4π
DJ∗

M,K(α, β, 0),

⟨0, θ2, ϕ∣ j2KΩ⟩ ≡
√

2J + 1
4π

Dj2∗

K,Ω(0, θ2, ϕ),

⟨θ1∣ j1Ω⟩ ≡ ΘΩ
j1 (θ1).

(8)

Here, DJ
M,K is a Wigner rotational matrix element, and ΘΩ

j1 is a nor-
malized associated Legendre function.45 j1 is the rotational angular
momentum corresponding to θ1, which along with j2 has the MF
z axis projection as Ω. The projection of J onto the SF z axis is given
by M, which along with j2 has the projection onto the DF z axis as K.

As monomer ABC does not undergo bond breaking during
non-reactive scattering, an optimized basis can be designed. To this
end, the eigenfunctions of the 1D reference Hamiltonians, i.e.,

ĥ1∣v1⟩ = E1,v1 ∣v1⟩,

ĥ2∣v2⟩ = E2,v2 ∣v2⟩,
(9)

were solved using the sine discrete variable representation (sine-
DVR),46 in which

⟨r1∣n1⟩ ≡

√
2

b1 − a1
sin

n1π(r1 − a1)

b1 − a1
,

⟨r2∣n2⟩ ≡

√
2

b2 − a2
sin

n2π(r2 − a2)

b2 − a2
,

(10)

where a and b define the ranges over r. The sine-DVR grid points
labeled by l1 and l2 are given as r1,l1 = a1 +

l1(b1−a1)

M1+1 and r2,l2 = a2

+
l2(b2−a2)

M2+1 , where M1 and M2 are the total numbers of DVR points
(also the numbers of bases ∣n1⟩ and ∣n2⟩, respectively). The 1D
reference Hamiltonian matrices in DVR are constructed as

⟨l′1∣ĥ1∣l1⟩ = K̃ l′1 ,l1 + δl′1 ,l1 V1(r1,l1),

⟨l′2∣ĥ2∣l2⟩ = K̃ l′2 ,l2 + δl′2 ,l2 V2(r2,l2),
(11)

where the sine-DVR kinetic energy matrices K̃ are evaluated ana-
lytically according to Ref. 46, while the potential energy matrices
are diagonal in DVR. By diagonalizing the 1D reference Hamilto-
nian matrices, the eigenvalues E1 and E2 and the corresponding
orthogonal eigenvectors ξl1v1 and ζl2v2 are obtained, where

∣v1⟩ = ∑
l1

ξl1v1 ∣l1⟩,

∣v2⟩ = ∑
l2

ζl2v2 ∣l2⟩.
(12)

To further improve the efficiency, the potential-optimized DVR
(PODVR)47,48 can be used. The corresponding PODVR grids,
denoted as r1,p1 and r2,p2 , are given by the eigenvalues of the
⟨v′1∣r1∣v1⟩ = ∑

l1
ξl1v′1 ξl1v1 r1,l1 and ⟨v′2∣r2∣v2⟩ = ∑

l2
ζl2v′2 ζl2v2 r2,l2 matrices,

respectively. The corresponding eigenvectors ρv1p1 and τv2p2 can
then be used in evaluating the reference Hamiltonians, ⟨p′1∣ĥ1∣p1⟩

= ∑
v1

ρv1p′1 ρv1p1 E1,v1 and ⟨p′2∣ĥ2∣p2⟩ = ∑
v2

τv2p′2 τv2p2 E2,v2 , respectively.

The transformation matrices between the PODVR and the finite
basis representation (FBR), namely Pp1v1 and Qp2v2 , are obtained by
diagonalizing the above Hamiltonian matrices, and they are used in
calculating the quadrature below. In practice, DVR basis ∣l1⟩ and ∣l2⟩
are chosen to construct the 1D reference Hamiltonian matrices in
Eq. (11). While the number of DVR points could be a few hun-
dred, only several eigenfunctions ∣v1⟩ and ∣v2⟩ are stored for later use,
and the choice of the maximum numbers of them, v1max and v2max,
corresponds to v1max + 1 and v2max + 1 PODVR points, respectively.

Then, the parity-adapted (PA) primitive basis set is defined in
terms of a direct product of unsymmetrized primitive basis functions

∣ j1Ωv1v2j2K; JMε⟩ = ∣v1v2⟩∣ j1Ωj2K; JMε⟩, (13)

where the PA angular basis is

∣ j1Ωj2K; JMε⟩ =
1

√
2 + 2δK0δΩ0

[∣ j1Ωj2K; JM⟩

+ ε(−1)J
∣ j1(−Ω)j2(−K); JM⟩]. (14)

The PA radial basis depends on the symmetry of ABC. If A and C
are identical (an A2B type triatom), we have

⟨r1, r2∣v1v2⟩ =
1

√
2 + 2δv1v2

[⟨r1∣v1⟩⟨r2∣v2⟩ + pv⟨r2∣v1⟩⟨r1∣v2⟩],
(15)

where pv is defined below. Otherwise, we have

⟨r1, r2∣v1v2⟩ = ⟨r1∣v1⟩⟨r2∣v2⟩. (16)
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The PA primitive basis functions are eigenfunctions of the space
inversion parity ε (corresponding to the operator Ê∗),

Ê∗∣ j1Ωv1v2j2K; JMε⟩ = ε∣ j1Ωv1v2j2K; JMε⟩. (17)

For A2B type triatoms, an additional symmetry, nuclear exchange
parity Pex, is added,

P̂ex∣ j1Ωv1v2j2K; JMε⟩ = pv(−1)Ω
∣ j1Ωv1v2j2K; JMε⟩. (18)

In practice, ε and Pex = pv(−1)Ω are, respectively, set to be either +1
or −1 as conserved quantities in the calculation. In the PA basis, the
quantum numbers K and Ω are restricted because the combination
of unsymmetrized functions renders some terms of PA functions to
vanish. For both even and odd total parities p ≡ ε(−1)J

= ±1, the
restrictions are (i) K ≥ 0 and (ii) for K = 0, Ω is restricted to non-
negative integers. We note that j2 ≠ 0 for odd total parity p = −1, and
K = Ω = 0 only exists for even total parity p = +1. For A2B-type tri-
atoms with exchange symmetry, there are additional restrictions: (i)
v1 ≥ v2 and (ii) for v1 = v2, only the pv = 1 terms survive. On the other
hand, there is no restriction on v1 and v2 for ABC-type triatoms.

In scattering calculations, the rovibrational eigenfunctions of
monomer ABC ∣η; JMε⟩ serve as the contracted basis to reduce
the size of the Log D matrix. To this end, the contracted and PA
primitive bases are related by a transformation matrix T,

∣ j2tK; JMε⟩ = ∑
χ

Tj2K
χt ∣χ j2K; JMε⟩, (19)

where χ ≡ (j1Ωv1v2) is the collective index of the primitive basis
and t labels a ro-vibrational internal state of monomer ABC. The
T matrix is obtained by diagonalizing the monomer’s Hamilto-
nian matrix in the PA primitive basis. In principle, the Hamil-
tonian matrix elements can be evaluated directly in terms of PA
basis functions, but we find the equations are tedious and com-
plex (albeit analytical), due to the combination over ±K and
±Ω in Eq. (14). In the ABC+D program, our strategy is to first
evaluate the Hamiltonian matrix elements in the unsymmetrized
basis, ⟨ χ′j2K∣ĥABC∣ χ j2K⟩ and then transform it into the PA basis,

⟨ χ′j2K; JMε∣ĥABC∣ χ j2K; JMε⟩. The nonzero elements of the KEO
in the unsymmetrized basis have been reported by Wang and
Carrington42 and is given as follows:

⟨χ j2K∣ĥ1 + ĥ2∣ χ j2K⟩ = E1,v1 + E2,v2 ,

⟨ j ′1Ωv′1v′2j2K∣T̂vr∣ j1Ωv1v2j2K⟩ = (δv′2 ,v2 Bv′1v1 + δv′1 ,v1 Cv′2v2)

× {
1
8

δj ′1 ,j1[j2(j2 + 1) −Ω2
] + δj ′1 ,j1 j1( j1 + 1) +

1
4
[j2( j2 + 1) − 3Ω2

]Ej ′1j1Ω},

⟨ j ′1(Ω ± 1)v′1v′2j2K∣T̂vr∣ j1Ωv1v2j2K⟩ =
1
4
(δv′2 ,v2 Bv′1v1 − δv′1 ,v1 Cv′2v2)λ

±
j2Ω[(2Ω ± 1)(G±j ′1j1Ω −D±j ′1j1Ω) − 2δj ′1 ,j1 λ±j1Ω],

⟨ j ′1(Ω ± 2)v′1v′2j2K∣T̂vr∣ j1Ωv1v2j2K⟩ =
1

16
(δv′2 ,v2 Bv′1v1 + δv′1 ,v1 Cv′2v2)λ

±
j2Ωλ±j2(Ω±1)(2F±j ′1j1Ω −H±j ′1j1Ω),

(20)

where λ±ab =
√

a(a + 1) − b(b ± 1). Matrices B, C, D, F, G, and
the residual PEO matrix elements ⟨ χ′j2K∣Vres∣ χ j2K⟩ are discussed
below.

For simplicity, we drop irrelevant quantum numbers and the
operator ĥABC in the middle of the Dirac bracket in Eqs. (21) and
(22). For ABC triatoms without exchange symmetry, PA matrix
elements need be calculated only for K = 0 block,

⟨Ω′∣Ω⟩K=0,ε
=

1
√

2 + 2δΩ′ ,0

1
√

2 + 2δΩ,0
[⟨Ω′∣Ω⟩ + ε(−1)J

× (⟨−Ω′∣Ω⟩ + ⟨Ω′∣−Ω⟩) + ⟨−Ω′∣−Ω⟩]

=
1

√
1 + δΩ′ ,0

1
√

1 + δΩ,0
[⟨Ω′∣Ω⟩ + ε(−1)J

⟨−Ω′∣Ω⟩].

(21)

This is because that for K > 0, the unrestricted quantum numbers of
PA basis functions are identical to those of the unsymmetrized one
and that the cross terms for K and −K equal to zero. Otherwise for
A2B-type triatoms, an additional combination of matrix elements
dependent on v1 and v2 is carried out for all K blocks,

⟨v′1v′2∣v1v2⟩
Pex
=

1
√

2 + 2δv′1 ,v′2

1
√

2 + 2δv1 ,v2

× [⟨v′1v′2∣v1v2⟩ + p′v⟨v
′
2v′1∣v1v2⟩

+ pv⟨v′1v′2∣v2v1⟩ + p′vpv⟨v′2v′1∣v2v1⟩]. (22)

In summary, the diagonalization is carried out individually
for each j2, K-labeled triatomic Hamiltonian matrix block. For the
K = 0 block, the diagonalization is obviously needed. For matrix
blocks labeled by positively valued K, the eigenvalues Eint and the
transformation matrix T are obtained by diagonalizing the matrix
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only once (K = 1 in the ABC+D program). We emphasize that
although a large number of primitive basis ∣χ⟩ may be involved in
Eq. (19), only a few specifically selected contracted basis ∣η⟩ need be
included in the CC equations [Eq. (5)]. The use of this contracted
basis significantly reduces the size of the matrices needed in CC
equations. In the ABC+D program, we also provide an optional choice
of using a customized contracted basis consisting of only desired
( j2t) pairs. We also note that a triatomic molecule can be either
linear rotor or a symmetric and asymmetric top so that different
labels of ro-vibrational states are needed. Nonetheless, the quantum
numbers ( j2t) pairs used here are general for all types of triatomic
molecules.

D. Evaluation of matrix elements
The residual potential matrix is expressed explicitly as

⟨ χ′j2K∣Vres∣ χ j2K⟩ ≡ δΩ′ ,Ω⟨v
′
1v′2∣⟨ j ′1Ω∣Vres(r1, r2, θ1)∣ j1Ω⟩ ∣v1v2⟩

= δΩ′ ,Ω ∑
p1p2p3

Pp1v′1 Pp1v1 Qp2v′2

×Qp2v2 wp3 ΘΩ
j ′1 ΘΩ

j1 Vres(r1,p1 , r2,p2 , θ1,p3), (23)

where wp3 is the weighting factor of the corresponding Gauss–
Legendre quadrature of θ1. The quadrature is calculated directly
without any intermediate matrices.

The matrices B, C, D, F, and G are expressed as

Bv′1v1 =
1

2mA
⟨v′1∣

1
r2

1
∣v1⟩ =

1
2mA
∑
p1

Pp1v′1 Pp1v1

1
r2

1
,

Cv′2v2 =
1

2mC
⟨v′2∣

1
r2

2
∣v2⟩ =

1
2mC
∑
p2

Qp2v′2 Qp2v2

1
r2

2
,

D±j′1 j1Ω = ⟨Θ
Ω±1
j′1 ∣cot θ1 ∣ΘΩ

j1 ⟩ = ∑
p3

wp3 ΘΩ±1
j′1 (θ1,p3)Θ

Ω
j1 (θ1,p3) cot θ1,p3 ,

Ej′1 j1Ω = ⟨ΘΩ
j′1 ∣

1
1 + cos θ1

∣ΘΩ
j1 ⟩ = ∑

p3

wp3 ΘΩ
j′1 (θ1,p3)Θ

Ω
j1 (θ1,p3)

1
1 + cos θ1,p3

,

F±j′1 j1Ω = ⟨Θ
Ω±2
j′1 ∣

1
1 + cos θ1

∣ΘΩ
j1 ⟩ = ∑

p3

wp3 ΘΩ±2
j′1 (θ1,p3)Θ

Ω
j1 (θ1,p3)

1
1 + cos θ1,p3

,

G±j′1 j1Ω = ⟨Θ
Ω±1
j′1 ∣

1
sin θ1

∣ΘΩ
j1 ⟩ = ∑

p3

wp3 ΘΩ±1
j′1 (θ1,p3)Θ

Ω
j1 (θ1,p3)

1
sin θ1,p3

,

H±j′1 j1Ω = ⟨Θ
Ω±2
j′1 ∣Θ

Ω
j1 ⟩ = ∑

p3

wp3 ΘΩ±2
j′1 (θ1,p3)Θ

Ω
j1 (θ1,p3),

(24)

in which matrices B and C are calculated by PODVR, and matri-
ces E, F, G, and H are evaluated by a Gauss–Legendre quadrature
over θ1.

The centrifugal matrix U is analytical as given,

Uη′ ,η ≡ ⟨η′∣(J − j2)
2
∣η⟩

= δt′ ,tδj′2 ,j2{δK′ ,K[J(J + 1) + j2(j2 + 1) − 2K2
]

− δK′ ,K+1

√
1 + δK0λ+JK λ+j2K − δK′ ,K−1

√
1 + δK1λ−JK λ−j2K}. (25)

The interaction PEO matrix is

Vη′ ,η ≡ δK′ ,K⟨j′2 t′K∣ΔV ∣j2tK⟩. (26)

The calculation of V is carried out by firstly evaluating the values of
the real and imaginary parts of the contracted basis ∣ j2tK⟩ at each
quadrature point using Eq. (19). Written explicitly,

real[∣ j2tK⟩p1p2 l3 l4 l5] = ∑
χ

Tj2K
χt Φv1v2(r1,p1 , r2,p2)Θ

Ω
j1

× (θ1,l3)d
j2
K,Ω(θ2,l4) cos(Ωϕl5),

imag[∣ j2tK⟩p1p2 l3 l4 l5] = ∑
χ

Tj2K
χt Φv1v2(r1,p1 , r2,p2)Θ

Ω
j1

× (θ1,l3)d
j2
K,Ω(θ2,l4) sin(Ωϕl5), (27)

where dj2
K,Ω ≡

√
2j2+1

2 dj2
K,Ω is a normalized reduced Wigner rotational

function.45 In ABC+D, the values of contracted basis are evaluated in
terms of intermediate matrices as follows:

IMAj2tKΩv1v2 ,l3 l4 = RTFj2KΩl4∑
j1

Tj2K
j1Ωv1v2tALPj1Ωl3 ,

IMBj2tKΩ,p1p2 l3 l4 = ∑
v1v2

IMAj2tKΩv1v2 ,l3 l4 RDFv1v2p1p2 ,

real[∣ j2tK⟩p1p2 l3 l4 l5] = ∑
Ω

wl5 cos(Ωϕl5)IMBj2tKΩ,p1p2 l3 l4 ,

imag[∣ j2tK⟩p1p2 l3 l4 l5] = ∑
Ω

wl5 sin(Ωϕl5)IMBj2tKΩ,p1p2 l3 l4 ,

(28)
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where the various intermediate matrices are given as follows with
their corresponding Gauss-Legendre quadrature weight factors wl:

ALPj1Ωl3 =
√

wl3 ΘΩ
j1 (cos θ1,l3),

RTFj2KΩl4 =
√

wl4 dj2
K,Ω(θ2,l4),

IPSlR
p1p2 l3 l4 l5 = ΔV(RlR , r1,p1 , r2,p2 , θ1,l3 , θ2,l4 , ϕl5).

(29)

For the ABC-type monomer,

RDFv1v2p1p2 = Pp1v1 Qp2v2 ; (30)

otherwise, for the A2B-type monomer,

RDFpv
v1v2p1p2

=
1

√
2 + 2δv1 ,v2

(Pp1v1 Qp2v2 + pvPp1v2 Qp2v1). (31)

Then, the interaction PEO matrix as a function of intermolec-
ular distance R is evaluated by summing over all quadrature grid
points,

⟨j′2 t′K′∣ΔV ∣j2tK⟩lR

=
1
π

δK′ ,K ∑
p1p2 l3 l4 l5

(real[∣j′2 t′K⟩
p1p2 l3 l4 l5

]real[∣ j2tK⟩p1p2 l3 l4 l5]

+ imag[∣j′2 t′K⟩
p1p2 l3 l4 l5

]imag[∣ j2tK⟩p1p2 l3 l4 l5])IPSlR
p1p2 l3 l4 l5.

(32)

This fivefold summation represents the most time-demanding com-
putational task in the ABC+D program. Luckily, the V matrix is
independent of total energy E, which allows calculations of the
S-matrix at several total energies in a single run, by storing the same
V matrix in the virtual memory.

Furthermore, we note that a direct claim of arrays/matrices in
terms of indices may cause difficulties in flipping over of storage
reading pointer because of the high dimensionality of these inter-
mediate matrices. Indeed, FORTRAN77 compilers allow at most a
seven-dimensional claim of an array. To realize the vectorization of
these matrices, integer arrays that record the correspondence rela-
tionship between the sequential number (collective index) and each
index is prepared initially and used to facilitate the definition of
one-dimensional arrays with composite indices.

E. Propagation of log-derivative matrix
and extraction of S -matrix

We follow closely Manolopoulos’ potential-following improved
LogD method44 and apply it in ABC+D. A brief introduction of the
algorithm is given here. The CC equations [Eq. (6)] can be rewritten
in the following form:

d2Fη(R)
dR2 =W(R)Fη(R), (33)

where the coupled matrix W is

Wη′ ,η(R) =
Uη′ ,η

R2 + 2μVη′ ,η(R) − δη′ ,ηk2
η. (34)

By defining the log-derivative matrix Y ≡ dF
dR F−1, the second-

order differential equation [Eq. (33)] can be converted to a
first-order differential equation (or the so-called Riccati equation),

dY
dR
=W − Y2. (35)

In principle, the particular solution of a first-order differential equa-
tion can be obtained by assigning only one boundary condition.
As for non-reactive scattering problems, the boundary condition is
straightforward: at the classical forbidden radius R = R0, where the
potential energy is much larger than the total energy and the scatter-
ing wavefunction vanishes, Fη(R0) = 0. This leads the initial logD
matrix Y(R0) = ∞I, where I is the identity matrix. Alternatively,
the Wentzel–Kramers–Brillouin (WKB) boundary condition49 is
applied,

Yη′ ,η(R0) = δη′ ,η[Wη′ ,η(R0)]
1/2, (36)

which typically converges faster.
We note in passing that the capture calculations can be used

in statistical quantum modeling of scattering.50,51 Such a statisti-
cal model is quite useful in characterizing quantum scattering via a
long-lived intermediate.19,52 The capture boundary condition imple-
mented in our AB+CD code53 has been applied successfully in the
ultracold KRb + KRb → K2 + Rb2 calculations.54 For capture scat-
tering problems, the WKB initial boundary condition is set as an
imaginary absorption potential at R = Rc,

Yη′ ,η(Rc) = δη′ ,η

⎧⎪⎪
⎨
⎪⎪⎩

−i
√
−Wη,η(Rc) [Wη,η(Rc) ≤ 0],

√
Wη,η(Rc) [Wη,η(Rc) > 0].

(37)

Although we do not provide such an option in the ABC+D program,
it is straightforward to extend the current version to study capture
scattering problems using Eq. (37).

With the appropriate initial LogD matrix, Y(R0) is propagated
to the asymptotic region to obtain Y(Rasy), where the interaction
potential energy is sufficiently small compared with the collision
energy. In Manolopoulos’ improved LogD method, the propaga-
tion sector (a, b) is uniformly divided to two half-sectors, (a, c) and
(c, b) with c − a = b − c ≡ h. In the following equations, the half sec-
tor (R′, R′′) denotes both (a, c) and (c, b) intervals. Here, we use
the same matrix notations as Manolopoulos from Eqs. (38)–(43),
which should not be confused with our matrix notations above. The
propagator proceeds as

Y(R′′) = y4 − y3[Y(R
′
) + y1]

−1
y2, (38)

where

y1 = y1 +Q(R′),

y2 = y2,
y3 = y3,

y4 = y4 +Q(R′′),

(39)
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and

(y1)i,j = (y4)i,j = δi,j

⎧⎪⎪
⎨
⎪⎪⎩

∣pj∣ coth(∣pj∣h), p2
j ≥ 0,

∣pj∣ cot(∣pj∣h), p2
j ≤ 0,

(y2)i,j = (y3)i,j = δi,j

⎧⎪⎪
⎨
⎪⎪⎩

∣pj∣csch(∣pj∣h), p2
j ≥ 0,

∣pj∣ csc(∣pj∣h), p2
j ≤ 0.

(40)

For both half sectors, the Q matrices are

Q(a) =
h
3

U(a),

Q(c) =
4
h
[I −

h2

6
U(c)]

−1

−
4
h

I,

Q(b) =
h
3

U(b),

(41)

where

Ui,j(R) =Wi,j(R) − δi,jp2
j (42)

and

p2
j =Wj,j(c). (43)

Note, despite that pj is a complex number, all propagator matrix
elements are real.

In ABC+D, we divide the propagation interval (R0, Rasy) into
three segments so that different propagation step lengths h can be
used. For the short-range (small R) where potential energy varies
rapidly with R, h should be small, while for the long-range, h can
be relatively large. Using various h values rather than a uniform, one
can reduce the number of propagation steps and computational cost.

The extraction of the S-matrix from Y(Rasy) is carried out as
follows: First, a transformation of representation is performed from
the DF frame (K-labeled) into SF one (L-labeled), which is discussed
below. Then, the reaction matrix K is calculated by

K = −[Y(Rasy)N(Rasy) −N′(Rasy)]
−1
[Y(Rasy)J(Rasy) − J′(Rasy)].

(44)
It can be divided into open–open, open–closed, closed–open, and
closed–closed submatrices according to the internal energy of each
channel,

K =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

KOO KOC

KCO KCC

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (45)

and the S-matrix only involves the open–open submatrix of K,

S = (I + iKOO)
−1
(I − iKOO). (46)

Here, J and N and their first-order derivatives J′ and N′ are diagonal
matrices. For the open channels,

Ji,j(R) = δi,jk−1/2
j j̃Lj(kjR),

Ni,j(R) = δi,jk−1/2
j ñLj(kjR),

J′i,j(R) = δi,jk1/2
j j̃ ′L j

(kjR),

N′i,j(R) = δi,jk1/2
j ñ ′Lj(kjR),

(47)

where j̃Lj and ñLj are Riccati–Bessel functions of the first and the
second kinds, respectively, with their argument Lj being the orbital
angular momentum of each channel. For closed channels, we have

Ji,j(R) = δi,j,
Ni,j(R) = δi,j,

J′i,j(R) = δi,j[
1

2R
+ kj

I′Lj+1/2(kjR)
ILj+1/2(kjR)

],

N′i,j(R) = δi,j[
1

2R
+ kj

K′Lj+1/2(kjR)
KLj+1/2(kjR)

],

(48)

where I and K are modified Bessel functions of the first and the
third kinds, respectively. The Riccati–Bessel functions and the mod-
ified Bessel functions can be evaluated by Temme’s excellent Algol
routines55,56 with positive real arguments and real orders.

Because the modified Bessel functions increase or decrease
exponentially with respect to R and/or Lj, numerical difficulties may
occur for large/small kjR and large Lj values. Specifically, the val-
ues of I and K could exceed computer’s capacity to store as double
precision numbers. However, the values of I′/I and K′/K are rather
small. In ABC+D, we add the asymptotic form of modified Bessel
functions in case of double precision number overflow. For cases
kjR ≥ (Lj + 1/2)2

− 1/4,

J′i,j(R) ≅
1

2R
+ kj,

N′i,j(R) ≅
1

2R
− kj;

(49)

and for cases kjR < Lj + 3/2,

J′i,j(R) ≅
1 + 2kj(Lj + 1/2)

2R
,

N′i,j(R) ≅
1 − 2kj(Lj + 1/2)

2R
.

(50)

To our best knowledge, Eqs. (49) and (50) have not been reported
before.

F. Transformation of representation
After the propagation, one obtains the LogD matrix Y in the

helicity representation or the DF frame, which needs to be trans-
formed from the DF frame to the SF frame via an orthogonal
matrix B,

∣ j2tL; Jε⟩ =
Km

∑
K=0

BJj2ε
KL ∣ j2tK; Jε⟩. (51)

If the basis sets are “complete”, where Km = min(J, j2), then B is
analytical as

BJj2ε
KL =

√
2 − δK,0

√
2L + 1
2J + 1

⟨ j2KL0∣ JK⟩. (52)

The LogD matrix in the SF frame are calculated by

Y SF
= B TY DFB. (53)
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In ABC+D, we provide an option to use the so-called
K-truncation scheme,57 where a parameter Kmax can be set to trun-
cate the value of K as Km = min(J, j2, Kmax), leading an “incomplete”
basis set in the scattering calculation. If Kmax ≥ min(J, j2,max), this
approximation recovers the exact TICC approach. Otherwise for
Kmax < min(J, j2,max), the matrix B is no longer analytical and L is
no longer an integer. In ABC+D, by diagonalizing the centrifugal
matrix U, which is the corresponding matrix of operator L2, we
obtain the eigenvalues of L(L + 1) ≡ ℓ as well as the eigenvectors
as the orthogonal transformation matrix B. Thus, the eigenvalue of
L is calculated by L =

√
ℓ + 1/4 − 1/2, and the negative root of L

is dropped. We note that the “incomplete” helicity basis functions
are also employed in the extended coupled-states approximation
discussed below, where we thus use similar methodology by diago-
nalizing the U matrix to implement the transformation between DF
and SF frames.

One can transform the S-matrix in SF frame back to the BF
frame by

SK′ ,K = ∑
L′ ,L

iL−L′BK′ ,L′SL′ ,LBL,K (54)

in which other irrelevant subscripts are dropped. Finally, the state-
to-state probability for elastic and inelastic transitions can be
calculated in terms of the T-matrix,

PJ
j ′2t′←j2t(Ec) = ∑

K′Kε
∣TJε

j ′2t′K′ ,j2tK(Ec)∣
2
, (55)

where the T-matrix is evaluated by T = I-S.

G. Extended coupled-states approximation
In ABC+D, we provide an option to use the extended coupled-

states (ECS) approximation for solving the non-reactive scattering
problems,35,58 which was an extended version of original coupled-
states approximation.59,60 In the ECS approximation, the entire
matrix W in Eq. (34) is replaced by several K-labeled submatrices
blocks, which only include a limited number of neighboring helicity
(K′, K) blocks (Coriolis couplings). The partition of matrices in the
ECS approximation is rationalized by the weak Coriolis couplings
between far away K blocks. Unlike the K-truncation approxima-
tion that neglects high K helicity channels completely, the ECS
approximation retains all helicity states but with couplings to a few
neighboring channels.

By defining the number of nearest K blocks included as Δ, the
U matrix is now evaluated as

UJε,K
j ′2t′K′ ,j2tK = δj ′2 ,j2 δt′ ,t{δK′ ,K[J(J + 1) + j2(j2 + 1) − 2K2

]

− δK′ ,K+1

√
1 + δK0λ+JK λ+j2K

− δK′ ,K−1

√
1 + δK1λ−JK λ−j2K}, (56)

where K − Δ ≤ K ≤ K + Δ. Under such circumstances, the valid
value range of K is Δ ≤ K ≤ J − Δ. Note that V matrix retains its
expression in Eq. (26) as in rigorous TICC because it is block diago-
nal in K. So in ECS, the CC equations with the full matrix is replaced
by several CC equations with smaller K-labeled submatrices, which

yield K-labeled S-matrices. Finally, the state-to-state probability is
calculated as follows:

PJ
j ′2t′←j2t(Ec) = ∑

ε

J

∑
K=0

K+Δ
∑

K′=K−Δ
∣SJε,K

j ′2t′K′ ,j2tK(Ec)∣
2
. (57)

If Δ = 0, this ECS approach recovers the original CS approximation,
where no Coriolis coupling is included. If Δ ≥ (J + 1)/2 for odd val-
ued J (or Δ ≥ J/2 for even valued J), only one block K = (J + 1)/2 is
needed and it is thus exactly equivalent to the rigorous TICC.

H. Linear algebra
In ABC+D, the matrix operations include matrix–matrix mul-

tiplication, matrix diagonalization, and matrix inversion. LAPACK
routines61 are used to perform these computational tasks.

Once a diagonalization is accomplished, the sign of each eigen-
vector needs be set up manually because the sign of the eigenvector
is undetermined. In ABC+D, we stipulate the following criteria to
assign a consistent sign for all eigenvectors. (i) In diagonalizing the
1D Hamiltonian to obtain eigenfunctions ξl1v1 and ζl2v2 , the sign is
chosen to make sure the first peak of the wavefunction to be positive,
and others are adjusted accordingly. (ii) The transformation matrix
T is obtained by diagonalizing the monomer’s Hamiltonian matrix.
We set the first element of each eigenvector, Tj2K

χ=1,t , to be positive,
and others are adjusted accordingly. (iii) The orthogonal matrix B is
obtained by diagonalizing U. The stipulation of its signs must fully
conform to Eq. (52) in case of a “complete” basis set. To this end,
the last element of each eigenvector and (−1)j2+Km Bj2

KmL is set to be
positive and others are adjusted accordingly.

I. Coordinate transformation
In practice, the potential energy surface (PES) may be expressed

in various coordinate systems. To obtain correct potential energy at
each quadrature point in the BAST coordinates, coordinate trans-
formations must be correctly performed. In ABC+D, we provide with
one of such subroutines that transform the internal coordinates
into Cartesian coordinates, for both the triatomic monomer and
entire tetra-atomic system, from which the coordinates used in the
PES can be readily obtained. The corresponding algorithm is briefly
introduced here.

For the triatomic monomer, it is placed onto a two-dimensional
plane with the vector r⃗1 (a Radau bond length) lying along the Carte-
sian x-axis and its Radau canonical point being the origin O. So
we can calculate the coordinates of atom A (r1, 0), C (r2 cos θ1, r2
sin θ1) and its center of mass E. The coordinate of atom B is cal-
culated according to the formula

Ð→
OB =

Ð→
OE(1 −

√
mABC/mB). Note

that atom B is placed on the inverse direction of E with respect to the
origin O.

The Cartesian coordinates in the DF frame of the ABC+D
system are shown in Fig. 1. Atom D (0, 0, R) is first calculated.
Assume the ABC monomer is initially placed on the xOz plane,
and their initial Cartesian coordinates are calculated as implemented
for the triatomic system, denoted as A′ and C′. By rotating A′

along
Ð→
OB with an angle of ϕ, the coordinate of A is obtained. For

an arbitrary point (x′, y′, z′), the rotation along arbitrary unit vec-
tor (nx, ny, nz) anticlockwise with θ is done by a transformation
(x, y, z) = (x′, y′, z′)R(Ð→n , θ), where
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R(Ð→n , θ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n2
x(1 − cos θ) + cos θ nxny(1 − cos θ) + nz sin θ nxnz(1 − cos θ) − ny sin θ

nxny(1 − cos θ) − nz sin θ n2
y(1 − cos θ) + cos θ nynz(1 − cos θ) + nx sin θ

nxnz(1 − cos θ) + ny sin θ nynz(1 − cos θ) − nx sin θ n2
z(1 − cos θ) + cos θ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (58)

Similar operations are implemented with C′ to get C.

J. Summary of the program
The executive flow of the program is summarized in Fig. 2.

Firstly, ABC+D reads parameters from an input file source.dat.
Second, the primitive basis functions are prepared and the monomer
Hamiltonians are diagonalized to obtain the transformation matrix
T. Then, the contracted basis functions and matrices in the CC equa-
tions are prepared. ABC+D treats LogD matrices of multiple total
energies simultaneously, by calling for an energy-independent inter-
action PEO matrix V. Namely, in the propagation process, V(R′)
is calculated for the current LogD step R′, and it is repeatedly used
to calculate all Y(R′) matrices. Once Y(R′) matrices of all energies
are obtained, V(R′′) is calculated and used for all Y(R′′) matrices.
Finally, after the propagation is finished, S-matrix elements at each
total energy are extracted individually. The state-to-state integral
cross section is calculated as

σj ′2t′←j2t(Ec) =
1

2j2 + 1
π

2μEc
∑

J
(2J + 1)PJ

j ′2t′←j2t(Ec). (59)

The state-to-state differential cross section is calculated in terms of
T-matrix elements as

dσj ′2t′←j2t(ϑ, Ec)

dΩ

=
1

2j2 + 1∑K′K

RRRRRRRRRRR

1
2ikj2t

∑
Jε
(2J + 1)dJ

K′ ,K(ϑ)T
Jε
j ′2t′K′ ,j2tK(Ec)

RRRRRRRRRRR

2

, (60)

where dJ
K′ ,K(ϑ) is an element of the reduced rotational matrix with

scattering angle ϑ.

To verify the new code, we have compared the rotationally
inelastic cross sections using the current code with a previous cal-
culation for the case of H2O + He scattering, and the agreement is
satisfactory.39 This code was further applied to investigate the ro-
vibrationally inelastic scattering for the H2O + Cl39 and H2O + Ar
systems.58,62,63 More recently, the stereodynamics of the H2O + He
scattering was investigated with the S-matrix elements calculated
using this code.64

III. A CALCULATION EXAMPLE
The H2O + Cl system is chosen to illustrate how to run

the ABC+D program. The Li–Dawes–Guo potential energy surface
(PES)65 is used for this tetra-atomic system, while the PES of Jiang
et al.66 is used for computing the ro-vibrational states of H2O.

A. Distributed files and input parameters
The current version of ABC+D program contains two folders:

ABC+D_Kmax and ABC+D_ECS, in which the K-truncation scheme
and ECS approximation can be used for implementation. Same files
are included in these two folders:

(1) the input file: source.dat; (different parameters are placed
in this file for the two folders and are discussed in Table I)

(2) the Fortran code files for the scattering calculations:
module.f, main.f, channel.f, matrix.f, pes_inter
face.f, function.f, propagation.f, match.f;

(3) a GNU makefile that can build the executable for the
dynamical calculations: Makefile;

(4) PES related files: biases.txt, check-adi.txt, clh2o-
pipnn.f, new8-final.dat, potent.f, weights.txt;

FIG. 2. Executive flow of the ABC+D
program.
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TABLE I. Input parameters for the test calculation on the H2O + Cl system. Distance quantities are in Bohr, angles in degree,
and energies in cm−1.

Parameter Explanation

module.f

m_A, m_B, m_C, m_D Masses of the four atoms in atomic mass units
Ndvr1, Ndvr2, Nth1 Number of DVR or quadrature points for primitive basis
Np1,Np2,Nl3,Nl4,Nl5 Number of PODVR or quadrature points for contracted basis
r1_eq, r2_eq, th1_eq Equilibrium geometry of monomer in Radau coordinates

source.dat

x0_r1, xe_r1, x0_r2, xe_r2 Intervals of DVR grids
x0_RR, x1_RR, x2_RR, xe_RR Intervals of propagation grids along R
h1, h2, h3 Propagation step lengths of three segments
eemax Contracted basis internal energy truncation
v1max, v2max, j1max Maximum quantum numbers to truncate the primitive basis
j2max, tmax Maximum quantum numbers to truncate the contracted basis
Kmax Maximum value of quantum number K (this parameter

only exists in folder ABC+D_Kmax)
NNK Number of nearest K-blocked submatrices involved (Δ)

(this parameter only exists in folder ABC+D_ECS)
Jtot, ipar, jpar Total angular momentum J, system parity ε, exchange parity

Pex (for ABC-type monomers, set jpar = 0)
nEtot Number of total energy points
Etot Array of total energy points
tot_thread The number of threads in OpenMP parallel process

(5) a plain-text file that allows customized choices of contracted
basis set: cbasis.txt.

Before compiling, the input parameters are modified in
module.f and source.dat, in which the namelist parameters of
input data are shown in Table I. A practical limit for the number
of contracted basis is a few thousand, due to the expensive matrix
operations in the calculations. For a typical supercomputer with the
capacity of ∼100 GB virtual memory, a single run of calculation is
able to deal with some hundreds total energies simultaneously, with-
out a major excessive central processing unit (CPU) time cost than
that of only one total energy involved.
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