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ABSTRACT: Reaction dynamics on the ground electronic state might be significantly
influenced by conical intersections (CIs) via the geometric phase (GP), as demonstrated for
activated reactions (i.e., the H + H2 exchange reaction). However, there have been few
investigations of GP effects in complex-forming reactions. Here, we report a full quantum
dynamical study of an important reaction in combustion (H + O2 → OH + O), which serves as
a proving ground for studying GP effects therein. The results reveal significant differences in
reaction probabilities and differential cross sections (DCSs) obtained with and without GP,
underscoring its strong impact. However, the GP effects are less pronounced for the reaction
integral cross sections, apparently due to the integral of the DCS over the scattering angle.
Further analysis indicated that the cross section has roughly the same contributions from the
two topologically distinct paths around the CI, namely, the direct and looping paths.

The endothermic H + O2 → OH + O reaction is one of the
most important elementary steps in gas-phase hydro-

carbon combustion, responsible for chain branching during the
oxidation of hydrogen.1 Due to the existence of a deep HO2
well in the reaction pathway,2 it also serves as a prototype for
complex-forming reactions.3 For these reasons, this reaction
was extensively investigated. Experimentally, its kinetics and
dynamics were studied by several groups.4−13 These
experimental studies were complemented by numerous
theoretical studies.14−48 Despite extensive work, a complete
understanding of this important process has not been achieved.
A key unresolved issue is that although the reaction

nominally proceeds on its electronic ground state (X2A″)
potential energy surface (PES), the dynamics might be
influenced by the first excited (A2A″) state, because of a
common type of electronic degeneracy, namely conical
intersections (CIs), between these two states, as shown in
Figure 1(a). For an N-dimensional system, a CI is an N-2-
dimensional cone-shaped seam of degeneracy.49,50 For the
HO2 system, the branching space is spanned by the H−O2
distance (R) and the Jacobi angle (γ). The two states are
coupled near the crossing seams by derivative coupling, which
enters the kinetic energy operator as a vector potential in the
adiabatic representation.51 Interestingly, the adiabatic ground
state electronic wave function changes its sign along a loop
encircling a CI, leading to the so-called geometric phase (GP)
in the nuclear wave function,52 which is related to the Berry’s
phase.53 Especially, the wave function acquires a phase (π)
each time the system loops around the CI, regardless of the
actual path. As a result, two paths passing the CI on different
sides might interfere, resulting in a significant impact on

quantum dynamics, even when the energy is below the
crossing seam.54−58 Hence, ignoring the GP in the adiabatic
treatment of the dynamics could lead to significant errors.59,60

The GP effect has recently been observed experimentally for
the activated H + HD → D + H2 reaction,

61 which is affected
by a high-energy CI, confirming a theoretical prediction made
a long time ago.51 However, the GP has been ignored in all
previous quantum scattering investigations of the complex-
forming H + O2 reaction, as only the ground electronic state
PES was used in such calculations.21−24,26−32,34−38,41−44,47,48

Interestingly, earlier quantum dynamics studies of the H + O2
inelastic scattering have revealed significant GP effects.62−64

Since the complex-forming nature of this reaction differs
markedly from that of the direct H + H2 reaction in the
dynamics that are strongly influenced by metastable
resonances,3 the impact of GP might also be quite distinct.
Already, GP was found to be important for the reverse OH +
O reaction at ultracold temperatures.65−67

The inclusion of the GP effect in the adiabatic
representation by adding the vector potential is numerically
difficult, because the derivative coupling and the related
diagonal Born−Oppenheimer correction are singular at the
crossing seam.68 Instead, the use of a diabatic representation,
in which derivative coupling is removed,69 is preferred as the
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GP effect is naturally included with the multistate framework.70

Unfortunately, rigorous diabatization is not possible for
systems with more than two atoms,71,72 but the residual
derivative coupling can be minimized in a so-called quasi-
diabatic representation.73 Diabatization is the determination of
the unitary adiabatic-to-diabatic (AtD) transformation that
converts the diagonal adiabatic PESs into a diabatic potential
energy matrix (DPEM), in which the diagonal and off-diagonal
elements are all smooth functions of the nuclear coordinates,
thus amenable to analytical representation.74,75 Recently, we
developed a two-state DPEM for the title reaction at the
multireference configuration interaction with Davidson
correction (MRCI+Q) level with a large basis set.76 This
machine-learned high-fidelity DPEM based on ab initio data is
expected to be more accurate than the existing one based on
the diatom-in-molecule (DIM) form,25 thus providing a
reliable platform for quantum characterization of the reaction
dynamics to unravel the impact of the CIs in this key complex-
forming reaction.
Here, we report the first nonadiabatic quantum dynamics

study of the H + O2 (v = 0, j = 1) → OH + O reaction based
on our new DPEM, along with adiabatic results for
comparison. Such calculations are extremely challenging
because of the large basis set needed to cover the vast phase
space accessed by the reaction. The total reactive integral cross
sections (ICSs) at collision energies (Ec) below 0.80 eV and
the differential cross section (DCS) at Ec = 0.70 eV are

obtained. The comparison of the nonadiabatic and adiabatic
results provides valuable insight into the role of the GP in
reactive scattering dominated by long-lived resonances.
To unravel the influence of the GP on the reactive dynamics,

we performed both adiabatic and diabatic calculations using
the Chebyshev propagator,77 with details of our quantum
dynamics given in the Supporting Information (SI). Since the
adiabatic calculation ignores the GP effect, the results will be
denoted below as NGP. Analogously, the diabatic calculations
include the GP effect and will be denoted as GP. The wave
functions in the diabatic and adiabatic representations are
connected with each other by the unitary AtD trans-
formation,74 which is also defined in the SI.
The total reaction probability of the title reaction as a

function of the collision energy is displayed in Figure 2 for

several partial waves. It is clear that the reaction possesses a
threshold at 0.695 eV, which well matches the experimental
reaction energy (0.72 ± 0.07 eV),78 underscoring the
endoergicity of the reaction. The reaction probabilities strongly
oscillate apparently due to metastable resonances supported by
the deep HO2 well. Although the average magnitudes of
reaction probabilities are similar, quantitative differences are
found between adiabatic and diabatic results even as the
collision energies are far below the minimum energy crossing
of the CI, which is 1.69 eV above the H + O2 asymptote.

76

Specifically, the inclusion of the GP in the diabatic results
significantly alters the position, width, and amplitude of the
resonance peaks in the probabilities. For several energy
regions, the GP and NGP results appear to be out of phase.
A similar phenomenon was found in probabilities for the H +
O2 inelastic scattering.

62 The reaction probability typically

Figure 1. (a) The ground and excited state adiabatic PESs of the HO2
system in reactant Jacobi coordinates with rOO fixed at 2.28 bohr. Two
equivalent linear CIs and a T-shaped CI are clearly seen between the
two adiabatic states. (b) Relaxed triangular plot in hyperspherical
coordinates of the ground state PES, with the cross for the C2v CI.
Exemplary direct (red) and looping (black) trajectories are also
shown. (The trajectories were calculated for H + O2 (v = 0, j = 1) at
Ec = 0.70 eV with zero impact parameter.)

Figure 2. Total reaction probabilities for the reaction H + O2 (v = 0, j
= 1) → O + OH for several partial waves; the red and blue lines show
the diabatic and adiabatic results, respectively.
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decreases with the increase of the total angular momentum J
due to the increasing centrifugal barrier but remains oscillatory.
The GP effect is also remarkable at higher J partial waves.
The GP effect displayed in the reaction probabilities seems

to be stronger than several previously studied reactive systems.
For the activated H + H2 exchange reaction, the GP effect on
probabilities is only significant when the collision energy
approaches the energy of the CI.79,80 For the H + H2+ → H2+ +
H reaction in its lowest triplet state, which has three equally
shallow (0.37 eV) potential wells, the GP effect causes only
relatively small changes in total reaction probabilities.81

The excitation function, namely, the energy dependence of
the ICS, is displayed in Figure 3 up to 0.80 eV. The differences

between the diabatic and adiabatic ICSs are much less
pronounced than the probabilities shown in Figure 2. The
sum over partial waves apparently washes away much of the
strong oscillations in the reaction probabilities and the GP
effects become less pronounced. Unlike the H + H2 exchange
reaction in which the GP effects are completely washed away
in ICS,55,80,82,83 some small but distinguishable effects still
remain for the title reaction.
The calculated final state resolved DCSs at Ec = 0.70 eV are

plotted in Figures 4(a) and 4(b). The inclusion of GP clearly
alters the angular distribution, but at this energy, the
differences are small, except in the forward and backward
directions. The relative differences in Figure 4(c) show that the
GP effect on the DCS for OH (v = 0, j = 0) is larger than that
for OH (v = 0, j = 1). In addition, strong oscillations are found
in both DCSs at some scattering angles. The GP effect could
be understood as the interference between the direct path
(labeled as path 1) and looping path (labeled as path 2), which
are topologically distinct.54 In the quantum mechanical
framework, results along the two paths could be extracted
from linear combinations of the GP and NGP scattering
amplitudes (eq 1a).83,84 The difference between the DCSs
obtained from the GP and NGP calculations arises from the
interference between two paths, which could be calculated
through the sum of the third and fourth terms in eq 1b:

f E f E f E

f E f E f E

( ) ( ( ) ( ))/ 2

( ) ( ( ) ( ))/ 2

path1 NGP GP

path2 NGP GP

= +

= (1a)

f E f E

f E f E f E f E

f E f E

f E f E f E f E

( ( ) ( )

( ( ) ( ) ( ) ( )))/2

( ( ) ( )

( ( ) ( ) ( ) ( )))/2

NGP path1
2

path2
2

path1 path2 path1 path2

GP path1
2

path2
2

path1 path2 path1 path2

= | | + | | +

* + *

= | | + | |

* + *
(1b)

To illustrate the two topologically distinct paths in the title
rection, we perform quasi-classical trajectory (QCT) calcu-
lations on the adiabatic ground state PES using VENUS.85 As
shown in Figure 1(b), two typical paths (direct and looping)
lead to the same products. In the direct path, the trajectory
passes through the HObOa well and reaches the HOb + Oa
product asymptote. In the looping path, on the other hand, the
trajectory first passes the HOaOb well and then isomerizes to
the HObOa well before reaching the HOb + Oa product
asymptote. The isomerization transition state is located at γ =
90°, R = 1.74 bohr, and rOO = 2.69 bohr. The two paths form a
complete encirclement of the C2v CI.
The DCSs along the two paths (associated with |f path1|2, |

f path2|2) and the interference terms (associated with fpath1(E)
f*path2(E) + f*path1(E)f path2(E)) are shown in Figure 5. As
mentioned before, the deep potential wells trap the wave
functions for a long time, which leads to comparable strengths
for the direct and looping paths.84 As shown in Figure 5, the
DCSs along both paths are oscillatory and largely forward−
backward symmetric, consistent with the complex-forming
character of the reaction. In addition, the GP effects are found

Figure 3. Excitation functions for the reaction H + O2 (v = 0, j = 1)
→ O + OH.

Figure 4. Calculated adiabatic and diabatic DCSs at Ec = 0.70 eV for
different final states (a and b) and the relative difference between GP
and NGP results (c).
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to be pronounced at most scattering angles, as shown in Figure
4 for both the j = 0 and j = 1 products, suggesting the strong
interferences between the two paths along the scattering
angles. The GP will affect the positions and widths of
resonances as featured by the differences in GP and NGP
reaction probabilities, thus leading to a pronounced GP effect
in DCS. However, the integration of the DCS over the
scattering angle washes away much of the GP effect.
The ICSs for path 1 and path 2 at a collision energy of 0.70

eV were calculated. Since the scattering calculations for
extracting the S-matrix are quite challenging due to the large
size of grids and very long Chebyshev propagation, we only
computed the S-matrix at this energy. It is found that the ICS
of the direct path (path 1) 0.0242 Å2 is slightly larger than that
(0.0184 Å2) of the loop path (path 2), suggesting the
competition between the two paths.
To obtain further mechanistic insights into the GP effect in

the reaction, we show in Figure 6 the ground state scattering
wave function at Ec = 0.70 eV obtained from both the diabatic

and adiabatic calculations. The former was obtained from the
diabatic wave functions via the AtD transformation to facilitate
the comparison. The existence of a deep well supports
numerous resonance states, as shown in Figure 2, which
produce many nodes in the scattering wave function, as shown
in Figure 6. Since the branching space of the C2v CI is spanned
by R and γ, the wave functions are plotted in these two
coordinates. One of the unique signatures of GP is the wave
function that encircles the CI changes its sign.54 This is
reflected here by a change of the permutational symmetry
when passing through the CI from the small to large R
regions.86 As shown in Figure 6(b), the GP scattering wave
function obtained from the diabatic representation is
symmetric with respect to the exchange of the two O nuclei
in the small R region, but it becomes antisymmetric outside the
CI with a node at γ = 90ο. This illustrates the interference
between the two paths on opposite sides of the CI.58 However,
this interference feature is absent in the NGP wave function, as
shown in Figure 6(a).

Figure 5. DCSs of the direct (path 1) and looping (path 2) paths at Ec = 0.70 eV for different final states (a and c) and the corresponding
interference terms (b and d).

Figure 6. Ground state scattering wave function (J = 0) at Ec = 0.70 eV with rOO (illustrated as the distance between the red balls) fixed at 2.50
bohr, obtained from adiabatic (a) and diabatic (b) calculations. The cross denotes the location of the C2v CI, and the black circle passing through
the CI defines the two regions with small and large R.
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To summarize, we investigate in this work the impact of GP
on the quantum state resolved H + O2 reactive scattering by
comparing adiabatic and diabatic calculations using the same
DPEM constructed recently based on high-level ab initio data.
Our results suggest that the inclusion of the GP quantitatively
changes the reaction probabilities for all partial waves.
However, these differences are largely washed out in the
ICS, after the DCS is integrated over the scattering angle.
Detailed analysis found that the two topologically distinct
paths around the CI, i.e., the direct and looping paths, make
comparable contributions to the cross sections, and the
interference between the two paths leads to a significant
impact on the differential cross sections. These insights
advance our understanding of GP beyond directly activated
reactions.
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