

[Highlight]

doi: 10.3866/PKU.WHXB201901030

www.whxb.pku.edu.cn

HCO 自由基光解反应中的动态干涉

杨金龙

中国科学技术大学化学与材料科学学院, 合肥 230026

Dynamical Interference in the Photodissociation of the HCO Radical

YANG Jinlong

School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China. Email: jlyang@ustc.edu.cn. Published online: January 15, 2019.

(a) HCO 基态与 A 态势能面示意图; (b) 实验测量与理论模拟产物转动态分布;(c) 准经典轨线计算阐述反应机理; (d) 散射波函数中存在干涉条纹。

类似光学"杨氏双缝干涉",微观粒子因其量 子特性可表现出波动性,继而发生物质波干涉。当 粒子有多条路径通往同一终点时,不同路径之间 的相位差可能会造成干涉¹。然而物质波干涉在化 学反应中十分罕见,这是由于反应物多个量子态 的平均效应而难以观测²。近年来,得益于实验技 术和理论计算方法的发展,化学家们已经揭示了 一些化学反应中存在量子干涉的实例³⁻⁵。例如杨 学明等人完成的关于水分子 *Ĩ* 态光解的研究³。水 分子 *Ĩ* 态光解中存在两条解离路径,一条是HOH 线性构型的锥形交叉点,另一条通过HHO线性构 型的锥形交叉点。两条不同路径的干涉使得产物 转动态存在奇偶交替的振荡,类似于"杨氏双缝干 涉",因而称为"Chemical Double Slit (化学双缝)"。 最近,**南京大学化学化工学院谢代前课题组** 和合作者通过理论计算结合实验揭示了HCOÃ态 光解反应中存在物质波干涉。高分辨的实验观测获得了以前⁶没观测到的产物转动分布的振荡结构。量子动力学计算重现了实验结果。准经典轨线 计算发现基态势能面上的能垒使H原子解离过程 中运动方向发生偏转。特别地,这个能垒的形状能 使不同的轨迹偏转到同一个角度,类似非弹性碰 撞中发现的"彩虹效应"⁷⁻⁹。不同的轨迹有不同的 相位,到达空间中同一点或者同一个产物末态就 会形成干涉。这种干涉使得解离产物CO的转动态 分布上呈现奇偶交替的振荡结构。不同于H₂O *Ĩ*态 光解,HCO *Ĩ*态光解反应不同轨迹的干涉是发生 在同一个势能面上,是由势能面独特形状造成的。 该研究与**新墨西哥大学郭华课题组、加州大学河** 滨分校张劲松课题组以及密苏里科学技术大学

Richard Dawes课题组合作共同完成。

该工作发表在*Science Advances*上¹⁰。该工作 揭示了一个由势能面独特结构所造成的物质波干 涉的实例,拓宽了人们对于干涉这一问题在化学 反应中的认识。

References

- Cohen-Tannoudji, C.; Diu, B.; Lalo, R. *Quantum Mechanics*; Wiley: New York, USA, 1977; pp. 11–15.
- Levine, R. D. *Molecular Reaction Dynamics*; Cambridge Univ. Press: Cambridge, UK, 2005; pp. 60–63.
- (3) Dixon, R. N.; Hwang, D. W.; Yang, X. F.; Harich, S.; Lin, J. J.;
 Yang, X. Science 1999, 285, 1249.
 doi: 10.1126/science.285.5431.1177m
- (4) Jambrina, P. G.; Herráez-Aguilar, D.; Aoiz, F. J.; Sneha, M.; Jankunas, J.; Zare, R. N. *Nat. Chem.* 2015, 7, 661.

doi: 10.1038/nchem.2295

- (5) Yuan, D.; Yu, S.; Chen, W.; Sang, J.; Luo, C.; Wang, T.; Xu, X.;
 Casavecchia, P.; Wang, X., Sun, Z.; *et al. Nat. Chem.* 2018, *10*, 653.
 doi: 10.1038/s41557-018-0032-9
- (6) Neyer, D. W.; Kable, S. H.; Loison, J. C.; Houston, P. L.; Burak, I.;
 Goldfield, E. M. J. Chem. Phys. 1992, 97, 9036.
 doi: 10.1063/1.463330
- Bowman, J. M. Chem. Phys. Lett. 1979, 62, 309.
 doi: 10.1016/0009-2614(79)80185-2.
- (8) Korsch, H. J. J. Chem. Phys. 1981, 75, 3850. doi:10.1063/1.442540
- (9) Gottwald, E.; Bergmann, K. J. Chem. Phys. 1987, 86, 2685.
 doi: 10.1063/1.452071
- (10) Han, S.; Zheng, X.; Ndengué, S.; Song, Y.; Dawes, R.; Xie, D.;
 Zhang, J.; Guo, H. *Sci. Adv.* 2019, *5*, eaau0582.
 doi: 10.1126/sciadv.aau0582