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6

SYMMETRY-ADAPTED
LINEAR COMBINATIONS

6.1 INTRODUCTORY REMARKS

In nearly all of the ways in which chemists employ symmetry restrictions to
aid them in understanding chemical bonding and molecular dynamics—for
example, constructing hybrid orbitals, constructing molecular orbitals (MOs),
finding proper orbital sets under the action of a ligand field, and analyzing
the vibrations of molecules, to name those subjects which will be covered
explicitly in later chapters of this book—there is a common problem. This
problem is to take one or more sets of orthonormal functions, which are
generally either atomic orbitals (AOs) or internal coordinates ol a molecule,
and to make orthonormal linear combinations of them in such a way that the
combinations form bases for irreducible representations of the symmetry group
of the molecule.

It will be obvious from thc content of Chapter 5 why such combinations
are desired. First, only such functions can, in themselves, constitute acceptable
solutions to the wave equation or be directly combined to form acceptable
solutions, as shown in Section 5.1. Second, only when the symmetry properties
of wave functions are defined explicitly, in the sense of their being bases for
irreducible representations, can we employ the theorems of Section 5.2 in
order to determine without numerical computations which integrals or matrix
elements in the problem are identically zero.

The kind of functions we need may be called symumetry-adapted linear
combinations (SA1.Cs). It is the purpase of this chapter to explain and illus-
trate the methods for constructing them in a general way. The details of
adaptation to particular classes of problems will then be easy to explain as
the needs arise.
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The fundamental, universally applicable tool for constructing SALCs is the
projection operator. A complete projection operator is capable of generating
a complete set of SALCs without, so to speak, human intervention. You just
put the machine in gear, push the start button, and collect the answer. How-
ever, cﬂmplete pr()]f:ctmn operators reqmre a knowledge of the entire matnx

since pr{}]ﬂctlﬂn Operamr that functlons by using only the characters but
1eory) there is no such thing as a free lunch, (not even with the help of group tt
rs. To one cannot automatically obtain complete SALCs with these operato
resen- obtain the complete result in cases of two- and higher-dimensional rep
show tations, “human intervention” is required. In the next section, we shall
rived. how both the complete and the incornplete projection operators are de
cases, We shall then show how they work in progresswely more elaborate

6.2 DERIVATION OF PROJECTION OPERATORS
Let us assume that we have an orthonormal set of [, functions ¢. ¢4, . . . .

¢, which form a basis for the ith irreducible representation (of dlmensmn

;) of a group of order /. For any operator, R, in the group we may then. by
definition, write

Rei = 3 ¢T(R), (6.2-1)

This equation is then multiplied by [[(R)!-/]*, and each side summed over
all operations in the group, giving

%mmm%@=§2@mmmmm* (6.2-2)

We note that the ¢{’s are functions independent of R; hence the right side of
6.2-2 may be rewritten as

> ¢t > T(RYL[T(RY]*
5 R

Thus, we have a series of /; terms, each of which is a ¢! multiplied by a
coefficient; each coefficient is itself expressed as a sum of products over the
operations R in the group. These coefficients, however, are governed by the
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great orthogonality theorem (page 81). which states that

] ] L — i 5. 08
2 T(RY[T(R)iv] vl 0,050,

r

Thus all ¢i except ¢i- have coefficients of zero, and only when i = j and
t = (' can even the term in ¢, survive. Thus 6.2-2 simplifies to

2 [TR)T*Re; = (?) ¢} 00 (6.2-3)
We now introduce the symbol
Pl = 1 S MR IR (6.2-4)
and rewrite 6.2-3 as
Pl ¢l = ¢80, (6.2-5)

The operator £/, is called a projection operator. It may be applied to an
arbitrary function ¢}, and only if that function itself or some term in it happens
to be ¢j. will the result be other than zero. If ¢} is a component of the
arbitrary function, ¢/ will be “projected” out of it and the rest will be
abolished. Thus, we have

Prrgl = b
In the very important special case where we use P}, we have

Pl i = $i6,0y (6.2-6)

##% H <Chemical Applications of Group Theory>
F. Albert Cotton =% Department of Chemistry, Texas A&M University



MFRIE LA R 2 4B &

which means that Pj. projects ¢/ out of an arbitrary function ¢i. Thus, by
using the {; projection operators based on the /; diagonal matrix elements, we
may generate from some arbitrary function, ¢j, the functions that form a
basis for the jth irreducible representation.

An lllustrative Application of the Complete Projection Operator

To illustrate how 6.2-6 works, let us consider the general function, xz +
vz + 2%, in the group G, (which is isomorphous to G{"). We shall use the
projection operators to obtain from this arbitrary function a pair of functions
which form a basis for the E representation. The matrices for this represen-
tation are given in Table 6.1. Table 6.2 shows how the arbitrary function
xz '+ yz + z*is transformed by each of the six symmetry operators in the

group.

Table 6.1 Matrices for the E Representation of the Group C,,

Operation Matrix Operation Matrix
10 1 0
g s 1) e o -]
[ 1 V3] 1 V3
T2 2 T2 2
C, \/g 1 o, \/j 1
T2 T2 2
(1 _ V3] 1 Vi
c: 2 2 ] 2 2
" Vi Vi
|2 2 2 2
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We shall first use the projection operator Pf;.

PE (xz + yz 4+ 22) = 3 {(I)(xz + yz + 2%)
+ (9[- + V3I)xz + §V3 = Vyz + 77
+ (=HHV3 - Daz - ¥1 + \/_)yz + 27
+ (1){xz = yz + z
+ (-9 \/))az+§(1—v'_)yv+~]
+ (—42)[;( - Dxz + 31 + V3)yz + ¥}

We now collect terms. The coefficients of the xz, yz, and z* terms are as
follows:

Xz AL A0+ VI - HVE - )+ 1+ 40+ V3) - HV3E - 1)
M+ +3+1+3+45+V3E-1+4-19)

83 +0) =

vz §[1 - HV3 - 1)+ 1+ V3 -1 -1 - V3) - {1 + V3]
L+ +d-1-4-3+V3(-4+1+31-1)
80) =

21— —d+1-4- 8 =3§0) =

Table 6.2_Transformaticns of-Seme Simple-Funetions of .y, and 2.

([

(|

Functions

Operator x y z xz +yz +:z
E y _ oz Xz +yz + 2
G H-x + Vav) -y - \fm z -0+ V3)xz + (V3 = Dyz} + :
G M—x - MR M- MEn. JAE - Dez L ;f,_;a_;;_gg .23
o,(xz) x —y z xr— 2 F2°

o, M-x=V3) My - V3) z -+ VI + (1 —'\/_}w.]+¢
Ty (- x + V3ay) My + V3x) : i{[‘\ff': - Dxz + (1 + V3)rz] + 2
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Next we use the projection operator, P&.

Hxz + yz + 2%) = H{(I)az + yz + &)
+ (= H[- 1+ V3)xz + (V3 - Dyz + 27
+ (= YV = Dxz = (1 + V3)yz + 2]
+ (= Dxz — yz + 2%)
+ (3)[- U + V3xz + ¥(1 — V3I)yz + z7]
+ (HEV3 - Dz + 31 + V3)yz + 27}

Again, we collect terms and evaluate the coefficients, obtaining

xz J1+ 30+ V) = HV3I - 1) -1 =31 + V3) + §(V3 - 1))
=l +i+i-1-§-3+V3E-4-1+)
=#0) =0

vz &1 - HV3 - 1)+ 31+ VE) H 1+ K1 - VE) 4 V3))
ok | IS TR NN R A AR VATESI IENE S SN )
=#3) =1

1 -d-d-1+i+8H=80)=0

Thus we have projected out of the function xz + yz + z7the two functions
xz and yz, which form a basis for the L representation. The component 2
has been abolished; it cannot, in whole or in part, contribute to a basis set
for the E representation.

The “Incomplete” Projection Operators

It will be clear from the foregoing discussion that in order to use the type of
projection operator we have developed so far we need to know the individual
diagonal elements of the matrices. This is inconvenient, since normally the
only information readily accessible is the set of characters—the sum of all the
diagonal matrix elements—for each matrix of the representation in question.
For one-dimensional representations, this is a distinction without a difference,
but for two- and three-dimensional cases it is advantageous to have a
projection operator +hat employs only the chaacters. It is not difficult to
derive the desired operator, beginning with the explicit expression for £,
namely,

= I-\..""‘-

pi.. =
ri h

;wmmrﬁ (6.2-7)
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If we sum each side over all values of ', we obtain
=3 Pi =13 S MR
! rOR
I ) .
- i3 s o |#
7 |4
= Z Z(RYIR (6.2-8)

In this development we have employed the interchangeability of the order of
the summations and the definition of the character of the matrix.
Let us now see what happens when we apply PXto xz + yz + 22

. DEI’_rv e ur 4 v = i vy 4+ vy 4 =2 P e
:m—m?&}xz_f (VE==)vz : i
i g S me——-
+ 0 + 0} + 0
+ 31 + V3) - {V3 - Dz = #[2 -
— HV3 = 1) + 1 + V3))yz + [2
-1 - 1)z + (2
4+ 3yz + 0z2%) = §(3xz

= xz 4

yz

sy =ladinina hee welesvet wet o e Tewthon . Wy we o hie agasatoa ke
mbinatiomn of the two separate functmns* xzand and projected out x linear co
obtain by employing the projection operators, yz, which we were able to
it be surprising. We obviously cannot get two Pl and P%. This should nc
me operator. Moreover, since the operator is separate results with only c

derived by adding the individual operators, a sum of the results given by the
individual operators is what we must expect. Thus, the projection operators
of the type P/ cannot be as powerful and explicit as those of the type Pi,.
However, they usually suffice for solving practical problems, as we shall dem-
onstrate in the next section.

6.3 USING PROJECTION OPERATORS TO CONSTRUCT SALCs

The most important and frequent use for projection operators is to determine
the proper way to combine atomic wave functions on individual atoms in a
molecule into MOs that correspond to the molecular symmetry. As pointed
out in Chapter 3, it is essential that valid MOs form bases for irreducible
representations of the molecular point group. We encounter the probicm of

writing SALCs when we deal with molecules having sets of symmetry-equiv-
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alent atoms (e.g., the C atoms of benzene, the F atoms of SF, or the Cl
atoms of Mo,Cli~) each contributing atomic wave functions to the formation
of MOs. What we need to know are (1) the irreducible representations to
which any given set of equivalent AOs will contribute, and (2) the explicit
form of the linear combinations of atomic orbitals (LCAQOs) that satisfy the
symmetry properties of each representation. In short, we need SALCs cor-
structed from atomic orbitals. In this section we shall present a number of
examples of how this is done.

SALCs Belonging Only to One-Dimensional Representations:
Sigma Bonding in C,H,
Clearly, for a one-dimensional representation the character and the full matrix
are the same thing. Hence, the “incomplete™ projection operator is “com-
plete™ in these cases, and will provide the appropriate SALC unambiguously
and automatically. Let us illustrate by asking what SALCs can be formed by
the s orbitals of the four hydrogen atoms in ethylene.

The three preliminary steps before the SALCs can actually be constructed
are, in this and all other cases. the following:

1. We identify the point group: D,,.

2. We use the four H Is orbitals as the basis for a representation; we chose
the coordinates and label the ¢ functions as shown below. It is necessary to

4

s oy

+ Gy .
S, rc:=c o,
see how the set of four basis functions, that is, a, - - * g, is affected by each

symmetry operation. If we list the four basis functions as a column vector
before and after the application of some symmetry operation, say Cs(z), this
is simply a way of stating that the C,(z) operation takes ¢, from its initial
position to the third position, @, to the fourth position, g; to the first position,
and g, to the second position.

a o,
7 oy
74 — a)
7y (]
Before Alter
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We can now write a matrix that expresses this transformation:

0 0 1 0] [o o5

0 0 0 1 as | _ Ty .
1 0 0 0 o| o | 47 0
0 1 0 0 T, 71

Clearly, the Dnly way that any such matrix can have 1 rather than (l' at any
sliaponal op yehar itoors wabatisbancticnsriale i

1 D,, that leave any basis  nothing to the character. Thus the only operations ir

place, E and o(xy), and  function in place are the two that leave them all in

following reducible rep- these have a character of 4. Hence we obtain the
resentation:

E G(z) Gly) Glx) i olxy) olxz) o(yz)

4 0 0 0 0 4 0 0

- Mreaduse shistaxisdsradesiblaog j:ﬂmﬂ‘.%m{;, 13-:2?22 bl o —
iﬁth these prefiminaries-setled; we now apply. thie-appropriate -projection )
T ctamr -PI{A.2-8)-far e.aah nfthese renresentatinns to-one nf rtm members. <

1 3 )] s E OISR [ e i L
aequcnt examples we shall dmp the numerical factor, J‘,HJ since we are in- !
tercsted only in the functional form of the SALC; its normalization is a trivial !
matter that can bc attended to at the end. For each of the representations !
~e have the following results: X
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E C(z) G(y) Cix)
PA(a)) = ()ay + (Nay + (Day + (Do

i a(xy) o(xz) o(yz)
+ (o3 + (1), + (D)o + (1)ay
=20, t o+ g, +o)~0 +0 + 05+ 0,
PP« () = (D, + (1)ay + (=1)oy + (=)o
+ ()os + (Do, + (- Do + (— Doy
=Na, ~a+ a0y —a)=a —mm:+ 0, — a
Pt (0)) = (Do, + (—L)az + (1)oy + (—1)oy
+ (= 1Day + (g, + (—1)a, + (1)a,

= — T e T N ) W WP vy

P (g)) =0, + 01 — 03 — 0,
As a check on these results, each one can be subjected to the symmetry

operations to be sure it responds (i.e., goes into +1 or —1 times itself) as
required by the representation to which it belongs.

A Case of Involving a Two-Dimensional Representation:
Sigma Bonding in PiCli™

We again take the first three steps and obtain:

Point Group: Dy,
Irreducible representations: A,, + B, + E,

~ i

3,0~
5

‘or the two one-dimensional representations, the procedure 1s routine, but F
: that we must explicitly apply every one of the 16 operations in the class: note

PAx (0)) =& + o, + 0y + 0,

PE"(O'|]""""G'| — 0oyt 0y — 0y
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Now let us go after the £, SALC. Note that only the operations E, C3. i,
and g, have nonzero characters, so these are the only ones that need to be
considered. We obtain

E C3 i ay,
PEi(a) = (Do) + (=2)o3 + (—2)o3 + (2)g,

=0y T 03

For a two-dimensional representation, we require two orthogonal func-
tions, which jointly form a basis for the representation. We have one, but we
require its partner. To obtain it, we recall that any member of a set of functions
forming the basis for a representation must be affected by the symmetry
operations of the group in one of two ways:

1. It will go into *1 times itself.

2. It will go into another member of the set or a combination of members
of the set.

If we look at the effect of the operations E, Cs, 2C3, i, g,, and 2a,, we
see that they give £1(g, — ;). This is as it should be, but uninformative.
However, the remaining operations have the second type of effect, and thus
enable us to find the partner function:

Ci (6 — y) = (32 — ay) or (02 — )
Ci(oy — o)) =(o:—a) or —(o:— ay)
$, (6, - ¢3) = (6, — a,) or (0> — )
Gg (6y — ;) = (6, —a)  or  —(oy — Gy)

Since only two orthogonal functions are needed to provide a basis for the
E, representations, we have clearly, in this simple case, reached the end of
our quest. The two functions, in normalized form, that we require are

e-o) ad - a)

An Example of SALCs for a Three-Dimensional Representation

=m 2 bpethesiod) M malensle with Oy spmmeiey, Tt e e dovwer tve Qe
set of six M—H ¢ bonds provide the basis for the irreducible representations
Ay + E, + Ty,. (As an exercise, show thal this is so.) What are the expres-

sions for the three SALCs corresponding to the T, representation?

##% H <Chemical Applications of Group Theory>
F. Albert Cotton =% Department of Chemistry, Texas A&M University



R LECA St A&

To solve this problem, we first recognize that we need not employ all of
the 48 opcrations of O; instead, we can deal with the T, representation of
the pure rotational subgroup O, which has only one half as many operations.
Let us label axes and basis functions as shown in the sketch below:

If we apply the projection operator P™t to g, and o we obtain:

PTi(5)) = 30, + (20, + 20, + 20;) — (o, + 20,)
'(J]+|74+d‘5+0‘b+26:)
=40, — 03 — 03 — 05 — O

PTi(0.) = 40, — 6; — 01 — G5 — O,

By subtracting one of these from the other we obtain 46, — 4g, = g, —
0. Clearly, by proceeding in the same way with g, and o, and then with o
and a,, we can obtain the following set of normalized SALCs:

V% (a1 — 02), v’% (03 = 04). \/% (o5 = a)
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These are clearly mutually orthogonal, and it is easy to show that they do,
indeed, transform according to the T, representation of O,. This last step is
left as an exercise.

A Cyclic o System: @ Orbitals for the Cyclopropenyl Group

The cyclopropenyl group, C;H;, 1s the simplest carbocycle with a delocalized
n system and can serve as a prototype for this class of molecules. Let us see
how the pn orbitals. of the individual carbon atoms can be combined. into
MOs—or at least the immediate precursors of actual # MOs. Cyclic n systems
will be discussed in general in Chapter 7, and this illustration is intended only
to demonstrate the use of projection operators in making SALCs of AOs on
different atoms.

The usual preliminary steps before the SALCs can actually be set up give
the following results.

Point group: D,
The representation (see sketch below)

E 2C1, 3 C3 a, 25_1, 30".

3 0 -1 =3 0 1

Irreducible components: A5 + E"

C,'I ' S;]

Cs, 0,
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Let us first apply the projection operator 2** to ¢,. We thus obtain

p'43¢’+""’¢1+¢’:‘*‘¢3+¢|+@53+¢:+¢‘|+
G+ bs + by + Py + s
= dly + ha + ) =y + Pp2 + Py

The reader may demonstrate by applying the 12 group operations to it that
this function does indeed form a basis for the A3 representation.

Clearly, if we multiply the A% SALC by 1/V3, it will be normalized. Thus
the final result for A% is (1/V3)(¢ + B + ¢u).

For the E” representation, using again ¢,, we have

PE gy = ()Ed, + (-1)Capy + (—1)Cip, + (0)Cash,
+ (0)Ci¢y + (0)Chhy, + (—=2)aupy + (1)S:,
+ ()Sig) + (0)a.d, + (V)B1h, + (V)51
=20 — 2 — Ps+ 24y — by — 1 =2¢, — ¢ — s

It is easy to show that the normalized function is (1/V6)(2¢, — ¢ — ¢3).
As before. this is but one of rwo functions, which rogether form a basis for
the E” representation. We find its partner following the same method as
before.

If we carry out a symmetry operation on one of the two functions, it will
either go into *1 times itself, into its partner, or into a linear combination
pf itself and its partner. Let us chose an operation which does nor convert it
into +1 times itself, namely C;:

Cm["\;—_ﬁ— (2¢ — ¢2 — ffh)] - % 2y — s — )

It may easily be shown that the second function is not =1 times the first. but
in this case it is also not orthogonal to it, as the partner must be. The second
function must therefore be a linear combination of the first and its partner.
and we can find the expression for the partner by subtracting an appropriate
multiple of the first one out of the second one, leaving the partner as the
remainder.

This is most easily done by ignoring, for the moment, normalization, with
the idea of attending to that at the end. Thus we proceed as follows:

(22 — @3 — &) — (= D2, — b2 — ¢3)
=20 — ¢y — ¢y + b — 1) — g,
= ¢, *%ﬁf’szfﬁz - ¢

This may be normalized to (1/V2) (¢ — ¢3). It is orthogonal to the first
function and is thus an acceptable partner:
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1 1
j7(2¢. = b ) 5 6 o) e
[ Qepubs — 2bus — B3 + dops — dads + ¢3) d

fﬁblﬁbzdf—EJfﬁl‘fth - J¢§df+ )

[(0)—7(0)—I+0—U+l]—0

lﬁi' ﬁl

V,_

The reader may demonstrate that the pair of functions

1 1
W(Eﬁbl - ¢1 - d’;}-» 72 (‘1”: - ‘i”.}

do in fact form a basis for the matrices of the E" representation and, moreover,
that each of these is orthogonal to the SALC of A5 symmetry.

A General Simplification

The procedure just used, although routine and reliable, is lengthy, particularly
for the two- dlmensmnal representation. The results could have been obtained
- iyt R ERI RIS symistry {wiihiess

us consider specifically the C;H; case, where this can be seen by inspecting
the Dy, character table. For all A-type representations, A}, A:, A}, and
A3, the characters are the same for the C, and Cj operations; similarly, the
E' and E” representations are identical within the subgroup C;. The thing
which decides that we are dealing specifically with A5 and E” SALCs is the
inherent nature of the pz basis functions.

On the strength of the above considerations, a procedure that restricts
attention to the pure rotational symmetry about the principal axis may be
used to construct the SALCs. For C;H;, we use the group C;. This group,
like all uniaxial pure rotation groups, is Abelian. Its three operations fall into
three classes, and it must have three irreducible representations of dimension
1. In general, a group C, has n one-dimensional representations (cf. Section
4.5), so that what we show here for C; will be generalizable to all C, groups.
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In the subgroup C;, the set of pn orbitals of C;H; spans the A and E
representations. The latter, however, appears in the character table as two
associated one-dimensional representations; a projection operator may be
written for each of these one-dimensional components individually. Thus, we
shall be able to obtain each of the SALCs belonging to the E representation
directly and routinely, using projection operators. This is the advantage of
using only the principal axis rotational symmetry. Let us now work through
the algebra and scc how much this trick cxpedites our task of constructing
the SALCs.

Application of the projection operators P#, PE", and P#' to ¢, (neglecting
constant numerical factors) gives:

PAg, = (WEP, + (1)Capy + (1)C3g,
= (D) + (g2 + ()¢5
= ¢y + ¢ + oy

pEll}qt,l - (1)}31361 + (E)C;Qﬁ, + (e*)Cig,

= ¢y + £ + %,

PG, = (1)Ep, + (£)Csd, + (6)Ci¢hy
= ¢, + %P, + £

The A SALC has exactly the same form as we previously obtained for the
A3 SALC, using full Dy, symmetry. The two E SALCs are actually satisfac-
tory in the sense of being proper basis functions and being orthogonal to each
other. However, we prefer to have real rather than complex coefficients. This
change can be accomplished very simply because of the fact that the two sets
of coefficients are arranged as pairs of complex conjugates (cf. Section 4.5).
Thus, if we add them term by term, the imaginary components of each pair
are elimipated, leaving a SALC with real coefficients. Also, if one set is
subtracted, term by term, from the other, a set of pure imaginary coefficients
will be obtained and the common factor i may be removed to leave another
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set of real coefficients. These addition and subtraction procedures are simply
a case of forming new linear combinations of an initial set, and this is an
entirely proper and rigorous thing to do. Thus, we add the two E SALCs
obtained above:

() + eps + £°¢3)
+ () + ', + &)
2, + (& + e*)p + (¢ + €%);

(cos 27/3 + isin 2x/3) + (cos 2n/3 — i sin 27/3)
2cos 2n/3 = 2(~4) = ~1

£+ c*

The first new SALC is therefore

24]]1 - 'd)l - f.bl
Next, we subtract the original E SALCs and divide out i:

(@) + e + &*¢y)
- (fﬁl; + E*¢1 + Ef,f}_g)
(e = &%)dr — (& — &%)
(¢ — ¢*)  (cos2a/3 + isin 2a/3) — (cos 2n/3 — isin 2xn/3)
P i
= (2i sin 2n/3)/i Vi
= 2sin 27/3 = 2(—23) =V3

The second new SALC, which should be orthogonal to the first and therefore
its proper partner in forming a basis for the E representation, thus has the
form

b — s

Clearly, when the SALCs we have just obtained are properly normalized,
they are identical to those previously obtained by using full D;, symmetry.
This second procedure, which was much simpler, may be summarized as
follows:

1. An initial set of SALCs may be written down by inspection of the
character table. Each one is of the form a¢, + b¢p» + c¢b3, with coef-
ficients that are the characters for E, C;, Ci. _

2. The pairs of SALCs for the E representation are added and subtracted
(dividing the result by i) to get two new orthogonal SALCs which have
all real coefficients.

3. The SALCs are normalized.
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