量子化学作业 第十章（2017－2018 学期）

（第九章光谱部分）

1．Determine the term symbols associated with an $n p^{1}$ electron configuration．Show that these term symbols are the same as for an $n p^{5}$ electron configuration．

2．Given that the electron configuration of a zirconium atom is $[\mathrm{Kr}] 4 d^{2} 5 s^{2}$ ， what is the ground－state term symbol for Zr ？

（第十章）

1．The overlap integral，Equation 10．13c（Page 507 of the textbook），and other integrals that arise in two－center systems like H_{2}^{+}are called two－ center integrals．Two－center integrals are most easily evaluated by using a coordinate system called elliptical coordinates．In this coordinate system （Figure 10．4）（Page 503 of the textbook），there are two fixed points separated by a distance R ．A point P is given by the three coordinates

$$
\begin{aligned}
& \lambda=\frac{r_{A}+r_{B}}{R} \\
& \mu=\frac{r_{A}-r_{B}}{R}
\end{aligned}
$$

and the angle ϕ, which is the angle that the $\left(r_{A}, r_{B}, R\right)$ triangle makes about the interfocal axis. The differential volume element in elliptical coordinates

$$
d \mathbf{r}=\frac{R^{3}}{8}\left(\lambda^{2}-\mu^{2}\right) d \lambda d \mu d \phi
$$

is
Given the above definitions of λ, μ and ϕ, show that

$$
1 \leq \lambda<\infty \quad-1 \leq \mu \leq 1 \quad 0 \leq \phi \leq 2 \pi
$$

Now use elliptical coordinates to evaluate the overlap integral (Equation 10.13c):

$$
\begin{aligned}
S & =\int d \mathbf{r} 1 s_{A} 1 s_{B} \\
& =\frac{Z^{3}}{\pi} \int d \mathbf{r} e^{-Z r_{r_{A}}} e^{-\mathrm{r}_{B}}
\end{aligned}
$$

2. Show that

$$
\begin{aligned}
& \langle\hat{T}\rangle=\left\langle\psi_{+}\right|-\frac{1}{2} \nabla^{2}\left|\psi_{+}\right\rangle=\frac{\frac{1}{2}-\frac{S}{2}-K}{1+S} \\
& \langle\hat{V}\rangle=\left\langle\psi_{+}\right|-\frac{1}{r_{A}}\left|\psi_{+}\right\rangle+\left\langle\psi_{+}\right|-\frac{1}{r_{B}}\left|\psi_{+}\right\rangle+\left\langle\psi_{+}\right| \frac{1}{R}\left|\psi_{+}\right\rangle=\frac{-1+J+2 K}{1+S}+\frac{1}{R}
\end{aligned}
$$

3. Instead of just minimizing $E_{+}(\zeta, R)$ numerically, we can do it analytically. Use Equation 10.33(Page 518 of the textbook) to show that the optimum value of ζ as a function of $\omega=\zeta R$ is given by

$$
\zeta=\frac{-V_{+}(\omega)-\omega \frac{d V_{+}(\omega)}{d \omega}}{2 T_{+}(\omega)+\omega \frac{d T_{+}(\omega)}{d \omega}}
$$

4. In this problem, we shall prove that $\zeta \rightarrow 2$ as $R \rightarrow 0$, as shown in Figure 10.16(Page 519 of the textbook). First show that

$$
\begin{aligned}
& S(\omega)=1-\frac{1}{6} \omega^{2}+O\left(\omega^{3}\right) \\
& J(\omega)=-1+\frac{2}{3} \omega^{2}+O\left(\omega^{3}\right) \\
& K(\omega)=-1+\frac{\omega^{2}}{2}+O\left(\omega^{3}\right)
\end{aligned}
$$

as $R \rightarrow 0$. Now show that

$$
\begin{aligned}
& T_{+}(\omega)=\frac{1}{2}-\frac{\omega^{2}}{6}+O\left(\omega^{3}\right) \\
& V_{+}(\omega)=\frac{1}{\omega}-2+\frac{2}{3} \omega^{2}+O\left(\omega^{3}\right)
\end{aligned}
$$

Substitute these results into ζ in Problem 3 to obtain

$$
\zeta=2-\frac{2 \omega^{2}}{3}+O\left(\omega^{3}\right)
$$

5. Show that ψ given by Equation 10.38(Page 526 of the textbook) is an eigenfunction of $\hat{S}_{z}=\hat{S}_{z 1}+\hat{S}_{z 2}$ with $S_{z}=0$.
6. In this problem, we shall prove that if an Hermitian operator \hat{F} commutes with \hat{H}, then matrix elements of $\hat{H}, \quad H_{i j}=\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle$, between states with different eigenvalues of \hat{F} vanish. For simplicity, we prove this only for nondegenerate states. Let \hat{F} be an operator that commutes with \hat{H}, and let its eigenvalues and eigenfunctions be denoted by λ and ψ_{λ}, respectively. Show that

$$
[\hat{H}, \hat{F}]_{\lambda \sigma}=\left\langle\psi_{\lambda}\right|[\hat{H}, \hat{F}]\left|\psi_{\sigma}\right\rangle=(\sigma-\lambda) H_{\lambda \sigma}
$$

Now argue that $H_{\lambda \sigma}=0$ unless $\lambda=\sigma$. For degenerate states, it is possible to take linear combinations of the degenerate eigenfunctions and carry out a similar proof.
7. Show that the normalization condition for Equation 10.64(Page 538 of the textbook) is $c_{1}^{2}+2 c_{1} c_{2} S_{A B}+c_{2}^{2}=1$, where $S_{A B}$ is the overlap integral involving ϕ_{A} and ϕ_{B}.

