量子化学作业 第三章（2017－2018 学期）

3－3．In each case，show that $f(x)$ is an eigenfunction of the operator given．Find the eigenvalue．

\hat{A}	$f(x)$
$(a) \frac{d^{2}}{d x^{2}}$ $\cos \omega x$ $(b) \frac{d}{d t}$ $e^{i \omega t}$ （c）$\frac{d^{2}}{d x^{2}}+2 \frac{d}{d x}+3$ $e^{\alpha x}$ $(d) \frac{\partial}{\partial y}$ $x^{2} e^{6 y}$	

3－5．Write out the operator \hat{A}^{2} for $\hat{A}=$
（a）$\frac{d^{2}}{d x^{2}}$
（b）$\frac{d}{d x}+x$
（c）$\frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}+1$

Hint：Be sure to include $f(x)$ before carrying out the operations．

3-9. In Section 3.5, we applied the equations for a particle in a box to the TC electrons in butadiene. This simple model is called the free-electron model. Using the same argument, show that the length of hexatriene can be estimated to be 867 pm . Show that the first electronic transition is predicted to occur at $2.8 \times 10^{4} \mathrm{~cm}^{-1}$. (Remember that hexatriene has six π electrons.)

3-10. Prove that if $\psi(x)$ is a solution to the Schrodinger equation, then any constant times of $\psi(x)$ is also a solution.

3-13. What are the units, if any, for the wave function of a particle in a one-dimensional box?

3-15. Show that

$$
<x>=\frac{a}{2}
$$

for all the states of a particle in a box. Is this result physically reasonable?

3-18. A classical particle in a box has an equi-likelihood of being found anywhere within the region $0 \leq x \leq a$. Consequently, its probability distribution is

$$
p(x) d x=\frac{d x}{a} \quad 0 \leq x \leq a
$$

Show that $\langle x\rangle=a / 2$ and $\left\langle x^{2}\right\rangle=a^{2} / 3$ for this system. Now show that $\left.<x^{2}\right\rangle$ (Equation 3.32) and σ_{x} (Equation 3.33) for a quantum-mechanical particle in a box take on the classical values as $n \rightarrow \infty$. This result is an example of the correspondence principle.

3-21. Using the trigonometric identity

$$
\sin \alpha \sin \beta=\frac{1}{2} \cos (\alpha-\beta)-\frac{1}{2} \cos (\alpha+\beta)
$$

show that the particle-in-a-box wave functions (Equations 3.27) satisfy the relation

$$
\int_{0}^{a} \psi_{n}^{*}(x) \psi_{m}(x) d x=0 \quad m \neq n
$$

(The asterisk in this case is superfluous because the functions are real.) If a set of functions satisfies the above integral condition, we say that the set is orthogonal and, in particular, that $\psi_{m}(x)$ is orthogonal to $\psi_{n}(x)$. If, in addition, the functions are normalized, then we say that the set is orthonormal.

3-25. In going from Equation 3.34 to 3.35, we multiplied Equation 3.34 from the left by $\psi(x)$ and then integrated over all values of x to obtain Equation 3.35. Does it make any difference whether we multiplied from the left or the right?

3-26. Calculate $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for the $n=2$ state of a particle in a onedimensional box of length a. Show that

$$
\sigma_{x}=\frac{a}{4 \pi}\left(\frac{4 \pi^{2}}{3}-2\right)^{1 / 2}
$$

3-31. Show that $\langle\mathbf{p}\rangle=0$ for the ground state of a particle in a three-dimensional box with sides of length a, b, and c.

3-33. The Schrodinger equation for a particle of mass m constrained to move on a circle of radius a is

$$
-\frac{\hbar^{2}}{2 I} \frac{d^{2} \psi}{d \theta^{2}}=E \psi(\theta)
$$

where $I=m a^{2}$ is the moment of inertia and θ is the angle that describes the position of the particle around the ring. Show by direct substitution that the solutions to this equation are

$$
\psi(\theta)=A e^{i n \theta}
$$

where $n= \pm(2 I E)^{1 / 2} / \hbar$. Argue that the appropriate boundary condition is $\psi(x)=\psi(x+2 \pi)$ and use this condition to show that

$$
E=\frac{n^{2} \hbar^{2}}{2 I} \quad n=0, \pm 1, \pm 2, \ldots
$$

Show that the normalization constant A is $(2 \pi)^{1 / 2}$. Discuss how you might use these results for a free-electron model of benzene.

C-10. Using Equation C. 16, prove that $\mathbf{u} \times \mathbf{v}$ is given by Equation C. 17 .

C-11. Show that $l=|\mathbf{l}|=m v r$ for circular motion.

C-12. Show that

$$
\frac{d}{d t}(\mathbf{u} \cdot \mathbf{v})=\frac{d \mathbf{u}}{d t} \mathbf{v}+\mathbf{u} \frac{d \mathbf{v}}{d t}
$$

and

$$
\frac{d}{d t}(\mathbf{u} \times \mathbf{v})=\frac{d \mathbf{u}}{d t} \times \mathbf{v}+\mathbf{u} \times \frac{d \mathbf{v}}{d t}
$$

C－13．Using the results of Problem C－12，prove that

$$
\mathbf{u} \times \frac{d^{2} \mathbf{u}}{d t^{2}}=\frac{d}{d t}\left(\mathbf{u} \times \frac{d \mathbf{u}}{d t}\right)
$$

（以下题目选做）
3－35．The quantized energies of a particle in a box result from the boundary conditions，or from tlle fact that the particle is restricted to ．a finite region．In this problem，we investigate the quantum－mechanical problem of a free particle，one that is not restricted to a finite region．The potential energy $V(x)$ is equal to zero and the Schrodinger equation is

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \psi(x)=0 \quad-\infty<x<\infty
$$

Note that the particle can lie anywhere along the x axis in this problem．Show that the two solutions of this Schrodinger equation are

$$
\psi_{1}(x)=A_{1} e^{i(2 m E)^{1 / 2} x / \hbar}=A_{1} e^{i k x}
$$

And

$$
\psi_{2}(x)=A_{2} e^{-i(2 m E)^{1 / 2} x / \hbar}=A_{2} e^{-i k x}
$$

Where

$$
k=\frac{(2 m E)^{1 / 2}}{\hbar}
$$

Show that if E is allowed to take on negative values, then the wave functions become unbounded for large x . Therefore, we will require that the energy, E, be a positive quantity.

To get a physical interpretation of the states that $\psi_{1}(x)$ and $\psi_{2}(x)$ describe, operate on $\psi_{1}(x)$ and $\psi_{2}(x)$ with the momentum operator $\hat{P} \quad$ (Equation 3.11), and show that

$$
\hat{P} \psi_{1}=-i \hbar \frac{d \psi_{1}}{d x}=\hbar k \psi_{1}
$$

And

$$
\hat{P} \psi_{2}=-i \hbar \frac{d \psi_{2}}{d x}=-\hbar k \psi_{2}
$$

Notice that these are eigenvalue equations. Our interpretation of these two equations is that ψ_{1} describes a free particle with fixed momentum $\hbar k$ and that ψ_{2} describes a particle with fixed momentum $-\hbar k$. Thus, ψ_{1} describes a particle moving to the right and ψ_{2} describes a particle moving to the left, both with a fixed momentum. Notice also that there are no restrictions on k, and so the particle can have any value of momentum. Now show that

$$
E=\frac{\hbar^{2} k^{2}}{2 m}
$$

Notice that the energy is not quantized; the energy of the particle can have any positive value in this case because no boundaries are associated with this problem.

Last, show that $\psi_{1}^{*}(x) \psi_{1}(x)=A_{1}^{*} A_{1}=\left|A_{1}\right|^{2}=$ constant , and that $\psi_{2}^{*}(x) \psi_{2}(x)=A_{2}^{*} A_{2}=\left|A_{2}\right|^{2}=$ constant. Discuss this result in terms of the probabilistic interpretation of $\psi^{*} \psi$. Also discuss the application of the uncertainty principle to this problem. What are σ_{x} and σ_{p} ?
(Hint: Refer to the given reference book, < Quantum Chemistry>, Levine)

3-39. We can use the following wave function to illustrate some fundamental symmetry properties of wave functions:

$$
\psi_{n}=\left\{\begin{array}{ll}
\frac{1}{a^{1 / 2}} \sin \frac{n \pi x}{2 a} & n \text { even } \\
\frac{1}{a^{1 / 2}} \cos \frac{n \pi x}{2 a} & n \text { odd }
\end{array} \quad(-a<x<a)\right.
$$

Show that the wave functions are alternately symmetric and antisymmetric or even and odd with respect to the operation $x \rightarrow-x$, which is a reflection through the $x=0$ line. This symmetry property of the wave function is a consequence of the symmetry of the Hamiltonian operator, as we shall now show. The Schrodinger equation may be written as

$$
\hat{H}(x) \psi_{n}(x)=E_{n} \psi_{n}(x)
$$

Reflection through the $x=0$ line gives $x \rightarrow-x$, and so,

$$
\hat{H}(-x) \psi_{n}(-x)=E_{n} \psi_{n}(-x)
$$

Now show that if the potential energy $V(x)$ is even, then $\hat{H}(x)=\hat{H}(-x)$ (i.e., that \hat{H} is symmetric), and so show that

$$
\hat{H}(x) \psi_{n}(-x)=E_{n} \psi_{n}(-x)
$$

Thus, we see that $\psi_{n}(-x)$ is also an eigenfunction of \hat{H} belonging to the same eigenvalue E_{n}. Now, if there is only one eigenfunction associated with each eigenvalue (we call this a nondegenerate case), then argue that $\psi_{n}(x)$ and $\psi_{n}(-x)$ must differ by a multiplicative constant [i.e., that $\psi_{n}(-x)=c \psi_{n}(x)$]. By applying the inversion operation again to this equation, show that $c= \pm 1$ and that all the wave functions must be either even or odd with respect to reflection through the $x=0$ line because the Hamiltonian operator is symmetric. Thus, we see that the symmetry of the Hamiltonian operator influences the symmetry of the wave functions.

