量子化学作业 第七章（2017－2018 学期）

1．Show that the substitution $R(r) Y_{l}^{m_{1}}(\theta, \phi)$ into Equation 7.7 yields Equation 7．10．

2．Referring to Table 7．2，show that $R_{10}(R)$ and $R_{20}(R)$ are orthonormal．

3．Show explicitly that

$$
\hat{H} \psi=-\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{2}} \psi
$$

for the ground state of a hydrogen atom．
4. By evaluating the appropriate integrals, compute $\langle r\rangle$ in the $2 s, 2 p$, and $3 s$ states of the hydrogen atom; compare your results with Table 7.4 and the general formula

$$
<r_{n l}>=\frac{a_{0}}{2 Z}\left[3 n^{2}-l(l+1)\right]
$$

5. Show that the sum of the probability densities for the $n=3$ states of a hydrogen atom is spherically symmetric. Do you expect this to be true for all values of n ? Explain.
6. What is the ratio of the ground-state energy of atomic hydrogen to that of atomic deuterium?
7. Superconducting magnets have magnetic field strengths of the order of 15 T .

Calculate the magnitude of the splitting shown in Figure 7.9 for a magnetic field of 15
T. Compare your result with the energy difference between the unperturbed 1 s and 2 p levels. Show that the three distinct transitions shown in Figure 7.9 lie very close together.
8. Show that the force acting upon a magnetic dipole moment in a magnetic field B_{z} that varies in the z direction is given by $F_{z}=m_{z} \partial B_{z} / \partial z$.
9. Extend Table 7.6 to the case $l=4$. How many states are there?
10. Can you deduce a general formula for the total number of states for each value of l in Table 7.6?
11. Townsend (see end-of-chapter references) gives the following formula for the shift of a hydrogen atom energy level due to spin-orbit coupling:

$$
\Delta E_{s o}=\frac{m_{e} c^{2} Z^{4} \alpha^{4}}{4 n^{3}\left(l+\frac{1}{2}\right) l(l+1)} \times \begin{cases}l & j=l+\frac{1}{2} \\ -(l+1) & j=l-\frac{1}{2}\end{cases}
$$

The only new quantity in this expression is a, which is called the fine structure constant, and is given by $e^{2} / 4 \pi \varepsilon_{0} \hbar c$. Use this formula for $\Delta E_{s o}$ to show that the difference in energy between two states with the same value of n and l is

$$
\operatorname{diff}=\frac{m_{e} c^{2} Z^{4} \alpha^{4}}{2 n^{3} l(l+1)}=\frac{5.8437 Z^{4} c^{-1}}{n^{3} l(l+1)}
$$

Calculate the difference in energies between the $2 p^{2} \mathrm{P}_{1 / 2}$ and $2 p^{2} \mathrm{P}_{3 / 2}$ states of a hydrogen atom and compare your results to what you obtain from Table 7.7. Do the same for the $3 p^{2} \mathrm{P}_{1 / 2}$ and $3 p^{2} \mathrm{P}_{3 / 2}$ states and the $4 p^{2} \mathrm{P}_{1 / 2}$ and $4 p^{2} \mathrm{P}_{1 / 2}$ states.

12．Use the equation of the previous problem to calculate the difference in energy between the $3 d^{2} \mathrm{D}_{3 / 2}$ and $3 d^{2} \mathrm{D}_{5 / 2}$（原书写错，上一届助教注）states and the $4 d^{2} \mathrm{D}_{3 / 2}$ and $4 d^{2} \mathrm{D}_{5 / 2}$ states of a hydrogen atom．How about for the $4 f^{2} \mathrm{~F}_{5 / 2}$ and $4 f^{2} \mathrm{~F}_{7 / 2}$ states？

13．We＇ll see in Section 8.6 that the selection rule for electronic transitions in a hydrogen atom depends upon whether the integral $I=\left\langle n, l, m_{l}\right| z\left|n^{n}, l^{\prime}, m_{l}^{\prime}\right\rangle$ is zero or nonzero．If $I=0$ ，then the transition is forbidden；otherwise，it may occur．Show that $I=0$ unless $\Delta l= \pm 1$ and $\Delta m_{l}=0$ ．Do you find any restriction on $\Delta n ?$

