量子化学作业 第一章（2017－2018 学期）

1－4．Planck＇s principal assumption was that the energies of the electronic oscillators can have only the values $E=n h v$ and that $\Delta E=h v$ ．As $v \rightarrow 0$ ，then $\Delta E \rightarrow 0$ and $E \quad \mathrm{E}$ is essentially continuous．Thus，we should expect the non－classical Planck distribution to go over to the classical Rayleigh－Jeans distribution at low frequencies， where $\Delta E \rightarrow 0$ ．Show that Equation 1.2 reduces to Equation 1.1 as $v \rightarrow 0$ ．（Recall that $e^{x}=1+x+\left(x^{2} / 2!\right)+\cdots$, or，in other words，that $e^{x} \approx 1+x$ when x is small．）

1－7．Sirius，one of the hottest known stars，has approximately a blackbody spectrum with $\lambda_{\max }=260 \mathrm{~nm}$ ．Estimate the surface temperature of Sirius．

1－9．We can use the Planck distribution to derive the Stefan－Boltzmann law，which gives the total energy density emitted by a blackbody as a function of temperature． Derive the Stefan－Boltzmann law by integrating the Planck distribution over all frequencies．Hint：You＇ll need to use the integral：$\quad \int_{0}^{\infty} d x x^{3} /\left(e^{x}-1\right)=\pi^{4} / 15$

1-10. Can you derive the temperature dependence of the result in Problem 1-9 without evaluating the integral?

1-18. The threshold wavelength for potassium metal is 564 nm . What is its work function? What is the kinetic energy of electrons ejected if radiation of wavelength 410 nm is used?

1-20. When a clean surface of silver is irradiated with light of wavelength 230 nm , the kinetic energy of the ejected electrons is found to be 0.805 eV . Calculate the work function and the threshold frequency of silver.

1-22. Show that Planck's constant has dimensions of angular momentum.

1-30. Calculate the reduced mass of a nitrogen molecule in which both nitrogen atoms have an atomic mass of 14.00 . Do the same for a hydrogen chloride molecule in which the chlorine atom has an atomic mass of 34.97 . Hydrogen has an atomic mass of 1.008 .

1-32. Derive the Bohr formula for \tilde{v} for a nucleus of atomic number Z.
$1-35$. Show that the speed of an electron in the nth Bohr orbit is $v=e^{2} / 2 \varepsilon_{0} n h$. Calculate the values of v for the first few Bohr orbits.

1-40. Through what potential must a proton initially at rest fall so that its de Broglie wavelength is $1.0 \times 10^{-10} \mathrm{~m}$?

1-42. One of the most powerful modern techniques for studying structure is neutron diffraction. This technique involves generating a collimated beam ofneutrons at a particular temperature from a high-energy neutron source and is accomplished at several accelerator facilities around the world. If the speed of a neutron is given by $v_{n}=\left(3 k_{B} T / m\right)^{1 / 2}$, where m is the mass of a neutron, then what temperature is needed so that the neutrons have a de Broglie wavelength of 50 pm ?

MATHCHAPTER A

A-4. Express the following complex numbers in the form $x+i y$:
$\begin{array}{ll}\text { (a) } e^{\pi / 4 i} & \text { (b) } 6 e^{2 \pi i / 3}\end{array}$
(c) $e^{-(\pi / 4) i+\ln 2}$
(d) $e^{-2 \pi i}+e^{4 \pi i}$

A-7. Use Equation A. 6 to derive

$$
z^{n}=r^{n}(\cos \theta+i \sin \theta)^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

and from this, the formula of de Moivre:

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

A-9. Consider the set of functions

$$
\Phi_{\mathrm{m}}(\varphi)=\frac{1}{\sqrt{2 \pi}} e^{i m \varphi}\left\{\begin{array}{l}
m=0, \pm 1, \pm 2, \ldots \\
0 \leq \varphi \leq 2 \pi
\end{array}\right.
$$

First show that

$$
\int_{0}^{2 \pi} d \varphi \Phi_{m}(\varphi)=\left\{\begin{array}{lc}
0 & \text { for all values of } m \neq 0 \\
\sqrt{2 \pi} & m=0
\end{array}\right.
$$

Now show that

$$
\int_{0}^{2 \pi} d \varphi \Phi_{m}^{*}(\varphi) \Phi_{n}(\varphi)= \begin{cases}0 & m \neq n \\ 1 & m=n\end{cases}
$$

A-16. The Schwartz inequality says that $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then $x_{1} x_{2}+y_{1} y_{2} \leq\left|z_{1}\right|\left|z_{2}\right|$. To prove this inequality, start with its square:

$$
\left(x_{1} x_{2}+y_{1} y_{2}\right)^{2} \leq\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}=\left(x_{1}^{2}+\mathrm{y}_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)
$$

Now use the fact that $\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \geq 0$ to prove the inequality.

A-17. The triangle inequality says that if z_{1} and z_{2} are complex numbers, then $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$. To prove this inequality, start with:

$$
\left|z_{1}+z_{2}\right|^{2}=\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}=x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+2 x_{1} x_{2}+2 y_{1} y_{2}
$$

Now use the Schwartz inequality (previous problem) to prove the inequality. Why do you think this is called the triangle inequality

