## 量子化学作业 第二章（2017－2018 学期）

2－2．Solve the following differential equations：
（a）$\frac{d^{2} y}{d x^{2}}-4 y=0 \quad y(0)=\left.2 \quad \frac{d y}{d x}\right|_{x=0}=4$
（b）$\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0 \quad y(0)=-\left.1 \quad \frac{d y}{d x}\right|_{x=0}=0$
（c）$\frac{d y}{d x}-2 y=0 \quad y(0)=2$

2－3．Prove that $x(t)=\cos \omega t$ oscillates with a frequency $v=\omega / 2 \pi$ ．Prove that $x(t)=A \cos \omega t+B \sin \omega t$ oscillates with the same frequency，$\omega / 2 \pi$ ．

2－7．This problem develops the idea of a classical harmonic oscillator．Consider a mass $m \mathrm{~m}$ attached to a spring，as shown in Figure 2．11．Suppose there is no gravitational force acting on $m$ so that the only force is from the spring．Let the relaxed or undistorted length of the spring be $x_{0}$ ．Hooke＇s law says that the force acting on the mass m is $f=-k(x-x 0)$ ，where $k$ is a constant characteristic of the spring and is called the force constant of the spring．Note that the minus sign indicates the direction of the force：to the left if $x>x_{0}$（extended）and to the right if $x<x_{0}$ （compressed）．The momentum of the mass is：

$$
p=m \frac{d x}{d t}=m \frac{d\left(x-x_{0}\right)}{d t}
$$

Newton's second law says that the rate of change of momentum is equal to a force:

$$
\frac{d p}{d t}=f
$$

Replacing $f(x)$ by Hooke's law, show that:s

$$
m \frac{d^{2} x}{d t^{2}}=-k\left(x-x_{0}\right)
$$

Upon letting $\xi=x-x_{0}$ be the displacement of the spring from its undistorted length, then:

$$
m \frac{d^{2} \xi}{d t^{2}}+k \xi=0
$$

Given that the mass starts at $\xi=0$ with an initial velocity $v_{0}$, show that the displacement is given by

$$
\xi(t)=v_{0}\left(\frac{m}{k}\right)^{1 / 2} \sin \left[\left(\frac{k}{m}\right)^{1 / 2} t\right]
$$

Interpret and discuss this solution. What does the motion look like? What is the frequency? What is the amplitude?


A body of mass $m$ connected to a wall by a spring.

2-8. Modify Problem 2-7 to the case where the mass is moving through a viscous medium with a viscous force proportional to but opposite the velocity. Show that the equation of motion is:

$$
m \frac{d^{2} \xi}{d t^{2}}+\gamma \frac{d \xi}{d t}+k \xi=0
$$

where $\gamma$ is the viscous drag coefficient. Solve this equation and discuss the behavior of $\xi(t)$ for various values of $m, \gamma, k$. This system is called a damped harmonic oscillator.

2-10. We will see in Chapter 3 that the Schrodinger equation for a particle of mass $m$ that is constrained to move freely along a line between 0 and $a$ is:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \quad(\hbar=h / 2 \pi)
$$

with the boundary condition:

$$
\psi(0)=\psi(a)=0
$$

In this equation, $E$ is the energy of the particle and $\psi(x)$ is its wave function. Solve this differential equation for $\psi(x)$, apply the boundary conditions, and show that the energy can have only the values:

$$
E_{n}=\frac{\pi^{2} \hbar^{2} n^{2}}{2 m a^{2}} \quad(n=1,2,3 \ldots)
$$

or that the energy is quantized.

2-17. Prove that $\mu_{n}(x, t)$, the nth normal mode of a vibrating string (Equation 2.23), can be written as the superposition of two similar traveling waves moving in opposite directions. (Let $\phi_{n}=0$ in Equation 2.25.)

B-2. A discrete probability distribution that is commonly used in statistics is the Poisson distribution:

$$
f_{n}=\frac{\lambda^{n}}{n!} e^{-\lambda} \quad(n=0,1,2, \ldots)
$$

where $\lambda$ is a positive constant. Prove that $f_{n}$ is normalized. Evaluate $\langle n\rangle$ and $\left\langle n^{2}\right\rangle$ and show that $\left.\sigma^{2}\right\rangle 0$. Recall that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

B-3. An important continuous distribution is the exponential distribution:

$$
p(x) d x=c e^{-\lambda x} d x \quad 0 \leq x<\infty
$$

Evaluate $c,\langle x\rangle$ and $\sigma^{2}$, and the probability that $x>a$.

