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3-3. In each case, show that f(X) is an eigenfunction of the operator given. Find the

eigenvalue.
A f (x)
d2
(a)W COS WX
d _
b el ela)t
(b) ™

d? d
c)—+2—+3 e
()dx2 dx
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3- 5. Write out the operator A? for A=

d? d d? d
a)— b) — + X C)— —2x—+1
( )dx2 ( )dx ( )dx2 dx

Hint: Be sure to include f(x) before carrying out the operations.



3-9. In Section 3.5, we applied the equations for a particle in a box to the TC electrons
in butadiene. This simple model is called the free-electron model. Using the same
argument, show that the length of hexatriene can be estimated to be 867 pm. Show that
the first electronic transition is predicted to occur at 2.8x10°cm™ . (Remember that

hexatriene has six 7 electrons.)

3-10. Prove that if y/(X) is a solution to the Schrodinger equation, then any constant

times of y/(X) is also a solution.

3-13. What are the units, if any, for the wave function of a particle in a one-dimensional

box?



3-15. Show that
a
< X>=—

for all the states of a particle in a box. Is this result physically reasonable?

3-18. A classical particle in a box has an equi-likelihood of being found anywhere

within the region 0< x <a. Consequently, its probability distribution is
dx
p(x)dx =— 0<x<a
a

Show that <x> =a/2 and <x*> =a’/3 for this system. Now show that
<x*> (Equation 3.32)and o, (Equation 3.33) for a quantum-mechanical particle in
a box take on the classical values as n—oco. This result is an example of the

correspondence principle.



3-21. Using the trigonometric identity
. . 1 1
sinasin g = Ecos(a -p) —Ecos(a + /)
show that the particle-in-a-box wave functions (Equations 3.27) satisfy the relation

[[wa(w,(9dx=0  m=n

(The asterisk in this case is superfluous because the functions are real.) If a set of
functions satisfies the above integral condition, we say that the set is orthogonal and, in
particular, that w, (X) is orthogonal to y,(x) . If, in addition, the functions are

normalized, then we say that the set is orthonormal.

3-25. In going from Equation 3.34 to 3.35, we multiplied Equation 3.34 from the left
by w(x) and then integrated over all values of X to obtain Equation 3.35. Does it

make any difference whether we multiplied from the left or the right?

3-26. Calculate <x> and <Xx’> for the n=2 state of a particle in a one-

dimensional box of length a. Show that

GX — i (4_7[2 _ 2)1/2
4z~ 3



3-31. Show that <p >=0 for the ground state of a particle in a three-dimensional box

with sides of length a, b,and c.

3-33. The Schrodinger equation for a particle of mass m constrained to move on a

circle of radius a is

n* dy
—— =Ey (0
o1 agr /0
where | =ma’ is the moment of inertia and & is the angle that describes the

position of the particle around the ring. Show by direct substitution that the solutions

to this equation are
v (6) = Ae™
where n=+(2IE)"?/ . Argue that the appropriate boundary condition is

w(X) =w(x+2x) and use this condition to show that

212
E:n;: N=0,+1 42, .

Show that the normalization constant A is (27x)

U2 Discuss how you might use

these results for a free-electron model of benzene.



C-10. Using Equation C.16, prove that uxV is given by Equation C. 17.

C-11. Show that | = ||| =mvr for circular motion.

C-12. Show that

and



C-13. Using the results of Problem C- 12, prove that

(BAR 8 H 240
3-35. The quantized energies of a particle in a box result from the boundary
conditions, or from tl1e fact that the particle is restricted to .a finite region. In this
problem, we investigate the quantum-mechanical problem of a free particle, one that
is not restricted to a finite region. The potential energy V (X) is equal to zero and the
Schrodinger equation is
d 2!// 2mE
dx?
Note that the particle can lie anywhere along the x axis in this problem. Show that

w(x)=0 —00 < X <0

the two solutions of this Schrodinger equation are

% (X) _ Aiei(ZmE)”zx/h . Aleikx
] = =
And

% (X)___A&e—KZmEWZWh __A&e—mx
) = =
Where
k _ (ZmE)1/2
h



Show that if E is allowed to take on negative values, then the wave functions
become unbounded for large x . Therefore, we will require that the energy, E , be a
positive quantity.

To get a physical interpretation of the states that y,(X) and y,(X) describe,
operate on ,(X) and w,(X) with the momentum operator P (Equation 3.11),

and show that

And

Notice that these are eigenvalue equations. Our interpretation of these two
equations is that y, describes a free particle with fixed momentum #k and that y,
describes a particle with fixed momentum -7k . Thus, y, describes a particle
moving to the right and y, describes a particle moving to the left, both with a fixed
momentum. Notice also that there are no restrictions on Kk , and so the particle can
have any value of momentum. Now show that

h’k?
" om

E

Notice that the energy is not quantized; the energy of the particle can have any
positive value in this case because no boundaries are associated with this problem.
Last, show that w; (X)w,(X) = A'A = |A1|2 = constant , and that
v, Xw,(X)=AA = |A2|2 = constant . Discuss this result in terms of the probabilistic
interpretation of y y . Also discuss the application of the uncertainty principle to this
problem. Whatare o, and o, ?

(Hint: Refer to the given reference book, < Quantum Chemistry>, Levine)



3-39. We can use the following wave function to illustrate some fundamental

symmetry properties of wave functions:

1 . nxX
—7Sin——  neven
a 2a
Wy = (—a<x<a)
1 N X
—7 COS—— n odd
a 2a

Show that the wave functions are alternately symmetric and antisymmetric or even
and odd with respect to the operation X — —x, which is a reflection through the x=0
line. This symmetry property of the wave function is a consequence of the symmetry
of the Hamiltonian operator, as we shall now show. The Schrodinger equation may be

written as

H (), (X) = E,w, (X)

Reflection through the x=0 line gives X — —X, and so,

H (_X)Wn (_X) = Enl//n (_X)
Now show that if the potential energy V(X) is even, then H(x)=H (=x)(i.c., that

S

H is symmetric), and so show that

I:l (X)l//n (_X) = Enl)//n (_X)

Thus, we see that y, (—x) is also an eigenfunction of H belonging to the
same eigenvalue E_ . Now, if there is only one eigenfunction associated with each
eigenvalue (we call this a nondegenerate case), then argue thaty, (X) and w,(—X)
must differ by a multiplicative constant [i.e., thaty, (—X) = ¢y, (X) ]. By applying the
inversion operation again to this equation, show that ¢=21 and that all the wave
functions must be either even or odd with respect to reflection through the x=0
line because the Hamiltonian operator is symmetric. Thus, we see that the symmetry

of the Hamiltonian operator influences the symmetry of the wave functions.



