
量子化学作业 第三章 （2017-2018 学期） 

3-3. In each case, show that ( )f x  is an eigenfunction of the operator given. Find the 

eigenvalue. 

  

 

 

 

 

 

 

3- 5. Write out the operator 2Â  for Â    

 Hint: Be sure to include ( )f x  before carrying out the operations. 
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3-9. In Section 3.5, we applied the equations for a particle in a box to the TC electrons 

in butadiene. This simple model is called the free-electron model. Using the same 

argument, show that the length of hexatriene can be estimated to be 867 pm. Show that 

the first electronic transition is predicted to occur at 4 12.8 10 cm  . (Remember that 

hexatriene has six   electrons.) 

 

 

 

 

 

 

 

 

 

3-10. Prove that if ( )x  is a solution to the Schrodinger equation, then any constant 

times of ( )x  is also a solution. 

 

 

 

 

 

 

3-13. What are the units, if any, for the wave function of a particle in a one-dimensional 

box? 

 

 

 

 

 

 

 



3-15. Show that 

 for all the states of a particle in a box. Is this result physically reasonable? 

 

 

 

 

 

 

 

3-18. A classical particle in a box has an equi-likelihood of being found anywhere 

within the region 0 x a  . Consequently, its probability distribution is 

 Show that  / 2x a     and 2 2
 / 3x a     for this system. Now show that 

2x   (Equation 3.32) and x  (Equation 3.33) for a quantum-mechanical particle in 

a box take on the classical values as n   . This result is an example of the 

correspondence principle. 
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3-21. Using the trigonometric identity 

show that the particle-in-a-box wave functions (Equations 3.27) satisfy the relation 

 (The asterisk in this case is superfluous because the functions are real.) If a set of 

functions satisfies the above integral condition, we say that the set is orthogonal and, in 

particular, that ( )m x   is orthogonal to ( )n x  . If, in addition, the functions are 

normalized, then we say that the set is orthonormal. 

 

 

 

 

 

 

 

3-25. In going from Equation 3.34 to 3.35, we multiplied Equation 3.34 from the left 

by ( )x  and then integrated over all values of x  to obtain Equation 3.35. Does it 

make any difference whether we multiplied from the left or the right? 

 

 

 

 

 

 

 

 

3-26. Calculate x    and 2x    for the 2n    state of a particle in a one-

dimensional box of length a . Show that 
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3-31. Show that 0 p  for the ground state of a particle in a three-dimensional box 

with sides of length a , b , and c . 

 

 

 

 

 

 

 

3-33. The Schrodinger equation for a particle of mass m  constrained to move on a 

circle of radius a  is 

 where 2I ma  is the moment of inertia and   is the angle that describes the 

position of the particle around the ring. Show by direct substitution that the solutions 

to this equation are 

where 1/2(2 ) /n IE  . Argue that the appropriate boundary condition is 

( ) ( 2 )x x     and use this condition to show that 

Show that the normalization constant A  is 1/2(2 ) . Discuss how you might use 

these results for a free-electron model of benzene. 
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C-10. Using Equation C.16, prove that u v  is given by Equation C. 17. 

 

 

 

 

 

 

 

 

C-11. Show that l mvr l  for circular motion. 

 

 

 

 

 

 

C-12. Show that  

 and 
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C-13. Using the results of Problem C- 12, prove that 

  

 

 

 

 

 

 

(以下题目选做) 

3-35. The quantized energies of a particle in a box result from the boundary 

conditions, or from tl1e fact that the particle is restricted to .a finite region. In this 

problem, we investigate the quantum-mechanical problem of a free particle, one that 

is not restricted to a finite region. The potential energy ( )V x  is equal to zero and the 

Schrodinger equation is  

 Note that the particle can lie anywhere along the x axis in this problem. Show that 

the two solutions of this Schrodinger equation are 

 And 

 Where 
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   Show that if E  is allowed to take on negative values, then the wave functions 

become unbounded for large x . Therefore, we will require that the energy, E  , be a 

positive quantity.  

To get a physical interpretation of the states that 1( )x  and 
2 ( )x  describe, 

operate on 1( )x  and 2 ( )x   with the momentum operator P̂   (Equation 3.11 ), 

and show that  

And 

   Notice that these are eigenvalue equations. Our interpretation of these two 

equations is that 1  describes a free particle with fixed momentum k  and that 2  

describes a particle with fixed momentum k . Thus, 1  describes a particle 

moving to the right and 2  describes a particle moving to the left, both with a fixed 

momentum. Notice also that there are no restrictions on k  , and so the particle can 

have any value of momentum. Now show that 

Notice that the energy is not quantized; the energy of the particle can have any 

positive value in this case because no boundaries are associated with this problem. 

Last, show that 
2* *

1 1 1 1 1( ) ( ) constantx x A A A     , and that

2* *

2 2 2 2 2( ) ( ) constantx x A A A     . Discuss this result in terms of the probabilistic 

interpretation of *  . Also discuss the application of the uncertainty principle to this 

problem. What are x  and 
p  ? 

(Hint: Refer to the given reference book, < Quantum Chemistry>, Levine) 
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3-39. We can use the following wave function to illustrate some fundamental 

symmetry properties of wave functions: 

Show that the wave functions are alternately symmetric and antisymmetric or even 

and odd with respect to the operation x x , which is a reflection through the 0x    

line. This symmetry property of the wave function is a consequence of the symmetry 

of the Hamiltonian operator, as we shall now show. The Schrodinger equation may be 

written as 

Reflection through the 0x   line gives x x , and so, 

Now show that if the potential energy ( )V x  is even, then ˆ ˆ( ) ( )H x H x  (i.e., that 

Ĥ  is symmetric), and so show that 

Thus, we see that ( )n x   is also an eigenfunction of Ĥ  belonging to the 

same eigenvalue nE . Now, if there is only one eigenfunction associated with each 

eigenvalue (we call this a nondegenerate case), then argue that ( )n x  and ( )n x   

must differ by a multiplicative constant [i.e., that ( ) ( )n nx c x   ]. By applying the 

inversion operation again to this equation, show that 1c    and that all the wave 

functions must be either even or odd with respect to reflection through the 0x    

line because the Hamiltonian operator is symmetric. Thus, we see that the symmetry 

of the Hamiltonian operator influences the symmetry of the wave functions. 
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