量子化学作业 (2017-2018 学期)

1. The J = 0 to J = 1 transition for carbon monoxide (¹²C¹⁶O) occurs at 1.153×10^5 MHz. Calculate the value of the bond length in carbon monoxide.

2. This problem involves the calculation of the moment of inertia of a linear triatomic molecule such as $H^{12}C^{14}N$. The moment of inertia of any set of point masses is

$$I = \sum_{j} m_{j} l_{j}^{2}$$

where l_j is the distance of the *j* th mass from the center of mass. Thus, the moment of inertia of H¹²C¹⁴N is

$$I = m_H l_H^2 + m_C l_C^2 + m_N l_N^2$$

Show that equation above can be written as

$$I = \frac{m_H m_C r_{CH}^2 + m_H m_N r_{NH}^2 + m_C m_N r_{CN}^2}{m_H + m_C + m_N}$$

where the r's are the various inter-nuclear distances. Given that $r_{CH} = 106.8 pm$ and $r_{CN} = 115.6 pm$, calculate the value of *I*.

3. Given that l = 156 pm and $k = 250N \cdot m^{-1}$ for ⁶LiF, use the rigid rotator-harmonic oscillator approximation to construct to scale an energy-level diagram for the first five rotational levels in the v = 0 and v = 1 vibrational states. Indicate the allowed transitions in an absorption experiment, and calculate the frequencies of the first few lines in the *R* and *P* branches of the rotation-vibration spectrum of ⁶LiF.

4. The following spectroscopic constants were determined for pure samples of ⁷⁴Ge³²S and ⁷²Ge³²S:

Molecule	$B_{\rm e}/{\rm MHz}$	$\alpha_{\rm e}/{\rm MHz}$	D/kHz	l(v=0)/pm
⁷⁴ Ge ³² S	5593.08	22.44	2.349	0.20120
72Ge32S	5640.06	22.74	2.388	0.20120

Determine the frequency of the J = 0 to J = 1 transition for ⁷⁴Ge³²S and ⁷²Ge³²S in their ground vibrational state. The width of a microwave absorption line is on the order of 1 KHz. Could you distinguish a pure sample of ⁷⁴Ge³²S from a 50/50 mixture of ⁷⁴Ge³²S and ⁷²Ge³²S using microwave spectroscopy?

5. Using the parameters given in Table 6.1, calculate the frequencies (in cm⁻¹) of the $0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 3$, and $3 \rightarrow 4$ rotational transitions in the ground vibrational state of H³⁵CI in the nonrigid-rotator approximation

6. Use the data in Table 6.1 to calculate the ratio of centrifugal distortion energy to the total rotational energy of H³⁵Cl and ³⁵Cl³⁵Cl in the J = 10 state.

7. In terms of the variable θ , Legendre's equation is

$$\sin\theta \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] + (\beta^2 \sin^2\theta - m^2)\Theta(\theta) = 0$$

Let $x = \cos \theta$ and $P(x) = \Theta(\theta)$ and show that

$$(1-x^2)\frac{d^2P(x)}{dx^2} - 2x\frac{dP(x)}{dx} + (\beta^2 - \frac{m^2}{1-x^2})P(x) = 0$$

8. Show that the first 3 spherical harmonics in Table 6.5 satisfy the orthonormal condition (Equation 6.57).

9. Using explicit expressions for $Y_l^m(\theta, \phi)$, show that

$$\left|Y_1^{1}(\theta,\phi)\right|^2 + \left|Y_1^{0}(\theta,\phi)\right|^2 + \left|Y_1^{-1}(\theta,\phi)\right|^2 = \text{constant}$$

This is a special case of the general theorem

$$\sum_{m=-l}^{+l} \left| Y_l^m(\theta, \phi) \right|^2 = \text{constant}$$

known as Unsöld's theorem. What is the physical significance of this result?

10. In Cartesian coordinates,

$$\hat{L}_{z} = -i\hbar(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x})$$

Convert this equation to spherical coordinates, showing that

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$$

11. Convert \hat{L}_x and \hat{L}_y from Cartesian coordinates to spherical coordinates.

12. Compute the value of $\hat{L}^2 Y(\theta, \phi)$ for the following functions:

(a)
$$1/(4\pi)^{1/2}$$
 (b) $(3/4\pi)^{1/2} \cos \theta$
(c) $(3/8\pi)^{1/2} \sin \theta e^{i\phi}$ (d) $(3/8\pi)^{1/2} \sin \theta e^{-i\phi}$

Do you find anything interesting about the results?

13. Prove that \hat{L}^2 commutes with \hat{L}_x , \hat{L}_y and \hat{L}_z but that

$$\begin{bmatrix} \hat{L}_x, \hat{L}_y \end{bmatrix} = i\hbar\hat{L}_z \qquad \begin{bmatrix} \hat{L}_y, \hat{L}_z \end{bmatrix} = i\hbar\hat{L}_x \qquad \begin{bmatrix} \hat{L}_z, \hat{L}_x \end{bmatrix} = i\hbar\hat{L}_y$$

(Hint: Use Cartesian coordinates.) Do you see a pattern in these formulas?

Mathematics

1. Find the values of x that satisfy the following determinant equation:

$$\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 0 & 0 \\ 1 & 0 & x & 0 \\ 1 & 0 & 0 & x \end{vmatrix} = 0$$

2. Show that

$$\begin{vmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = 0$$

3. Solve the following set of equations using Cramer's rule:

$$x+2y+3z = -5$$

$$-x-3y+z = -14$$

$$2x+y+z = 1$$