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ABSTRACT: Accurately modeling enzyme reactions through
direct machine learning/molecular mechanics simulations remains
challenging in describing the electrostatic coupling between the
QM and MM subsystems. In this work, we proposed a reweighting
ME (mechanic embedding) REANN (recursively embedded atom
neural network) method that trains the potential and point charges
of the QM subsystem in vacuo. The charge equilibration approach
has been encoded into REANN to ensure conservation of the total
charge of the QM subsystem. Electrostatic coupling is measured by
point charges, and the polarization of the MM subsystem on the
coupling can be corrected by thermodynamic perturbation after
molecular dynamics simulations. We first constructed the REANN
surfaces of potential energy and charges for the acylation of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) by aspirin.
These surfaces allowed us to reproduce the free energy curves of B3LYP/MM-MD with a chemical accuracy. Subsequently, they
were successfully applied to R513A of COX-2, reproducing the free energy barrier simulated by B3LYP/MM MD with a difference
of less than 0.5 kcal mol−1 and a speedup of 80-fold, revealing our method can predict the activity of mutants accurately and rapidly.
This method is expected to be applied in virtual screening in the future.

1. INTRODUCTION
Mutant screening has always been a bottleneck in protein
engineering. One effective strategy to address this issue is to
transfer screening work to computers for virtual screening,
which can effectively reduce the size of the library and simplify
screening.1−4 Combining ab initio (ai) quantum mechanics/
molecular mechanical (QM/MM) potential5−9 with molecular
dynamics (MD) simulation is one of the most advanced
methods to predict the free energy barrier in enzyme
design,10−13 which considers both the electrostatic interactions
within the enzyme environment and the enzyme dynamics.14 A
high-level quantum chemical method is indispensable to
reproduce small energy differences,11,15 but it is very expensive
since each step of MD requires electronic structure
calculations, Therefore, the practical application of ai QM/
MM-MD in virtual screening is still in its early stages and
requires further development before it can be widely adopted.
Many efforts have been made to develop ab initio QM/MM-

MD methods aimed at reducing the need for direct, high-level
QM samplings while still accurately estimating free energy
changes along the reaction path. In the dual-Hamiltonian
approach initially proposed by Gao,13,16 a higher accuracy can
be achieved with an affordable computational cost by

calibrating the low-level QM model with additional functions
of energy17−19 or reoptimizing the parameters in the low-level
Hamiltonian against the high-level Hamiltonian.20−23 Because
only a few configurations are calculated with high-level QM
models, these methods are very efficient. However, the results
might fluctuate, since the configurations used in ab initio
calculations are too limited to describe the MM environment
sufficiently. In another dual-Hamiltonian approach, samplings
are performed at a low level of theory, and thermodynamic
perturbation (TP) is used to obtain the high-level QM free
energy.15,24,25 The overlap between sampling spaces at two
levels determines the success of the TP correction. Never-
theless, the overlap might be small for large QM systems and
lead to the failure of this reweighting method, which can be
partially improved by force-matching.26,27

Received: January 26, 2025
Revised: April 11, 2025
Accepted: April 14, 2025

Articlepubs.acs.org/JCTC

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.jctc.5c00149
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

N
A

N
JI

N
G

 U
N

IV
 o

n 
M

ay
 9

, 2
02

5 
at

 0
2:

11
:0

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/curated-content?journal=jctcce&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xinhu+Sha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhuo+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daiqian+Xie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yanzi+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.5c00149&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00149?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00149?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00149?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00149?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00149?fig=tgr1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00149?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf


In the past few decades, the development of machine
learning (ML) has facilitated broader applications of expensive
QM methods. A good training data set and machine learning
algorithm can help to accurately predict electronic structural
information such as energy, force, and charge of a system with
a computational speed comparable to molecular mechanics
(MM).28−32 Incorporating the machine learning27,31 or Δ-
machine learning15,19,33−35 techniques with QM potential is
another major family of approaches to accelerate the QM/
MM-MD simulations, in which the QM/MM-MD simulations
are performed on a preconstructed ML-QM/MM potential
energy surface (PES). In the QM/MM method, the electro-
static embedding (EE) scheme is recommended for handling
QM/MM electrostatic interactions, where the QM subsystem
is polarized by the MM atoms and the MM charges are treated
as one-electron terms in the effective Hamiltonian.10,36,37 But
since the electrostatic interactions also depend on the MM
environment, it is challenging to construct ML-QM/MM PES
in the EE scheme. One solution is to include certain QM
properties dependent on the MM environment as additional
descriptors in the neural network (NN) when building the
PES, for example, the QM partial charges calculated using a
low-level QM model or MM electrostatic potentials at the QM
grids.15,19,27,31,33 Alternatively, only the nearby MM atoms are
considered as the input variables of the ML model.34,35

Nevertheless, besides the coordinates of QM atoms, there are
still dozens to hundreds of additional input nodes, potentially
leading to convergence and affordability problems. Moreover,
the PES constructed in this way depends on the MM
environment and always requires prior semiempirical QM/
MM-MD simulations to calculate the QM properties or collect
configurations for NN training. Very recently, the Sugita group
developed a well-defined physical model to handle the
electrostatic interactions between the QM and MM regions
using the high-order terms from the Taylor expansion of the
electrostatic operator and an equivariant model. This model
achieves high accuracy and transferability among various
environment media but is limited to the spherical boundary
condition at present.38

In our group’s previous work,39 we developed the
reweighting ME EANN (embedded atom neural network)40

method combining ML-QM/MM potential in the mechanic
embedding (ME) scheme with weighted thermodynamic
perturbation (wTP) correction to the EE scheme. This
method was utilized to solution reactions and reproduced
the free energy barriers of B3LYP/MM-MD simulations within
0.5 kcal mol−1. Compared with B3LYP/MM-MD simulations,
our method can enhance computational speed by 30−60 folds.
Because the PES is constructed in the gas phase, it is
independent of the environment and can be applied to various
MM environments, which has been demonstrated by successful
simulations of the SN2 reaction of CH3Cl + Cl′− → Cl− +
CH3Cl′ in water and methanol employing the same PES.
To our knowledge, only a handful of papers have employed

direct machine learning potentials (MLPs) to study enzyme
reactions,27,38 and many used ΔML to calibrate low-level QM
methods.35,41,42 General methods to accelerate QM/MM-MD
simulations are still scarce for enzyme reactions, and it remains
challenging to predict the free energy barriers with “chemical
accuracy” by MLPs. In this work, we have developed the
reweighting ME REANN method, in which the pseudobond
approach43−45 is adopted to address the QM/MM boundary
problem and the charge equilibration (QEq) approach46 has

been encoded into recursively embedded atom neural network
(REANN)47,48 to ensure conservation of the total charge of the
QM subsystem. We apply it to the acylation reaction of
cyclooxygenase (COX) by aspirin. Initially, we construct ML
PES and charge surfaces for the QM subsystem using REANN,
and subsequently, perform REANN/MM-MD on the surfaces
to obtain the free energy curves of the acylation reactions for
two subtypes of COX: COX-1 and COX-2. Our method can
speed up the QM/MM MD simulations by 80-fold and
reproduce the free energy barriers of B3LYP/MM MD with an
accuracy of 0.5 kcal mol−1. In addition, we successfully apply
this PES to the R513A mutant of COX-2, demonstrating its
robustness and sufficiency. Future work will involve further
developing and applying this approach to virtual screening.

2. THEORY AND METHODS
2.1. REANN Approach. The energy and forces in the QM

subsystem are calculated by a novel package with the message-
passing framework based on PyTorch, namely REANN.47,48

The building-up of REANN starts from a series of Gaussian-
type orbitals (GTOs) centered at each atom like EANN
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where rîj represents the vector from the central atom i to its
neighboring atom j and xij, yij, and zij are its Cartesian
components. lx + ly + lz = L specifies the orbital angular
momentum L. αm and rm are parameters used to determine the
radial distribution of the mth atomic orbit. Then, the
embedded atom density (EAD) vector ρi of the central atom
i is calculated by
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where cj is the element-dependent orbital coefficient of atom j,
dm is the contraction coefficient of the mth primitive GTO, fc is
a cosine type cutoff function that makes the interaction
smoothly decayed to zero at the cutoff radius, N is the number
of atoms, and Nφ refers to the number of primitive GTOs for a
given l. The linear combination of these primitive GTOs
performs like a contracted Gaussian-type function (CGF),
where Nφ can be viewed as the “n” in STO-nG. The EAD
vector ρi is expressed by the square of the linear combination
of CGFs centered at neighboring atoms within cutoff radius.
Up to this point, the EADs can be considered as standard
three-body descriptors.
Through the message-passing framework, REANN deepens

the correlation between central atom i and its environment
beyond the cutoff radius. Different from EANN,40 the
neighboring atoms also have their unique fingerprints which
can be reflected on cj based on their individual environment. In
the iteration step t of message passing, the orbital coefficients
of the jth atom are updated based on its neighboring
environment.

c g c r( , )j
t

j
t

j
t

j
t

j
t1 1 1 1= [ ] (3)

where cjt−1 and rjt−1 are the orbital coefficients and atomic
positions in the neighborhood of the central atom j in the (t −
1)th iteration and gjt−1 is the jth NN module to update cjt. The
total energy of the QM subsystem follows the atomistic energy
d e c o m p o s i t i o n s c h e m e b a s e d o n ρ i :
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E E NN( )i
N
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N

i i1 1= == = . The point charge of each atom
can be obtained in a similar way. In our method, two REANNs
are constructed, respectively, for the QM energy and point
charges. Then, the point charges are used to calculate the
electrostatic interactions between the QM and MM sub-
systems.
The loss function of the potential energy surface is the same

as that in the original REANN package
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where, Nb is the size of the mini-batch. λF and λE represent the
weights of the energy and force in the loss function used in the
construction of PES, respectively. The superscript “ab initio” in
the equation denotes the physical quantities of the QM atoms
computed in vacuo at the DFT level.

2.2. Electrostatic Energy in the ME REANN. In the ME
scheme, the electrostatic interactions between the QM and
MM subsystems are calculated by Coulomb’s law

E
Q q

Ri j

i j

ij
QM/MM
elec,ME

,

=
(5)

in which Qi is the point charge fitted from the electrostatic
potential (ESP),49,50 qj is the charge of MM atom j in the force
field, and Rij is the distance between QM atom i and MM atom
j.
The total charge of the QM atoms should be a constant.

However, REANN48 architecture cannot guarantee that the
sum of all QM charges is equal to the preset value of the total
charge in the DFT calculations. To ensure the conservation of
total charge during simulations and address the potential future
requirements for systems with different charge states, here we

have encoded the charge equilibration (QEq) approach46 into
the REANN package. Otherwise, the MD simulations are
unstable, and the simulated systems will collapse on a short
time scale.
It is assumed that the charge density of the system is a

superposition of spherically symmetric Gaussian functions
centered at the atomic positions. By minimizing the total
energy with respect to atomic charge Qi, one can get a linear
system of equations. For details of the principle, please refer to
CENT in Goedecker’s work51 or RuNNer in Behler’s work,52

and here we applied it to fit ESP charges in vacuo. The point
charges, Q1, Q2, ... QN (N is the number of QM atoms), are
solved by a set of linear equations as follows, inin which χi is
the electronegativity for atom i, and the conservation of total
charge Qtot is addressed by including the constraint via the
Lagrange multiplier λ. The matrix A is defined as
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where rij represents the distance between atoms i and j. σi and
Ji are the width of Gaussian charge densities and element-
specific hardness for atom i, respectively.

Figure 1. Schematic diagram of ME QEq-REANN framework to calculate the total electrostatic energy of a QM/MM system. Starting from the
Cartesian coordinates of atoms in the QM subsystem, GTOs are constructed to represent atom-centered coordinate vectors in the local
environment. After iterative message passing, atomistic neural networks output their energy Ei and χi, respectively. Ei are summed up to get EgasQM,
and Qi are calculated by solving the linear equations as described in eq 6. Then, the electrostatic interactions of EQM/MMelec,ME are calculated by
Coulomb’s law. qMM are the charges for MM atoms from the molecular force field and EMMelec is the electrostatic interaction within the MM
subsystem.
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The loss function of the point charge surface is defined as
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Nb is the size of the mini-batch and Qi,j
ab initio denotes the

atomic charges of the QM atoms computed in vacuo at the
DFT level. Since σi and Ji do not have explicit reference values,
they are treated as trainable parameters of the NN and are
jointly optimized during the minimization of the loss function.
The atomic electronegativities χi serve as intermediate
quantities, which are predicted by atomic neural networks
before the charge equilibration block and vary with the QM
coordinates. Using the distance matrix of QM atoms, χi values,
and optimizable parameters σi and Ji, QM point charges are
solved by eq 6. The total electrostatic energy is calculated as
follows

E E E E

q q
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ij
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QM
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,
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where Ei,gas
REANN is the energy of QM atom i in the gas phase

obtained by REANN and Qi
REANN is the charge of QM atom

fitted by QEq-REANN. The scheme to calculate the total
electrostatic energy is illustrated in Figure 1.

2.3. Difference between the EE and ME Schemes.
Under the Born−Oppenheimer approximation, the total
effective Hamiltonian of QM/MM systems is

H H H Heff QM MM QM/MM= + + (10)

where HQM is the Hamiltonian for the QM subsystem in the
gas phase, HMM is the energies of the MM subsystem, and
HQM/MM is the interaction Hamiltonian between QM and MM
subsystems defined as

H H H HQM/MM QM/MM
bonded

QM/MM
vdW

QM/MM
elec= + + (11)

In the electrostatic embedding scheme, the MM atoms are
not polarized by the QM atoms, and the energies of HMM,

HQM/MM
bonded

, and HQM/MM
vdW

are calculated by classical force fields.
The remaining terms are related to the electrostatic
interactions with QM atoms and treated together on the
QM level by solving the Schrödinger equation of the following
Hamiltonian

H H HQM MM
elec

QM QM/MM
elec= + (12)

Its eigenvalue consists of two parts

E E EQM MM
elec

QM QM/MM
elec= + (13)

The QM/MM electrostatics include the permanent electro-
statics and relaxation terms16

E E EQM/MM
elec

QM/MM
perm 0

QM/MM
elec 0[ ] = [ ] + [ ] (14)

in which ρ0 and ρ are the electron density of the QM
subsystem in the gas phase and in the presence of the MM
environment, respectively. The EQM/MMperm [ρ0] is calculated in the
gas phase as

E q
j

j jQM/MM
perm 0 0[ ] =

(15)

in which ϕj
0 and qj are the electrostatic potential on the MM

atomic site j in the gas phase arising from the continuous QM
electron density and point charge of MM atom j, respectively.
And ΔEQM/MMelec [ρ − ρ0] can be calculated in a similar way

E q( )
j

j j jQM/MM
elec 0 0[ ] =

(16)

where ϕj is the electrostatic potential on the MM atomic site j
in the presence of the MM environment. The QM potential
energy can be decomposed into the energy of the QM
subsystem in the gas phase, and QM energy can be polarized
by the MM subsystem

E E EQM QM
0 0

QM
dist 0[ ] = [ ] + [ ] (17)

Within the classical linear response theory16,53,54

E E
1
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which means that in the electrostatic embedding (EE) scheme,
EQM−MM
elec can be decomposed into the QM energy in the gas
phase and the electrostatics between the charges of MM atoms

and electrostatic potentials ( )j j
1
2

0+ . While in the mechanic

embedding (ME) scheme, we first obtained the QM energy
and partial point charges for QM atoms by solving the
Schrödinger equation in the gas phase, and then, the
electrostatics are calculated by the Coulomb’s law

E E
Q q

Ri j

i j

ij
QM MM
elec,ME

QM
0 0

,

= [ ] +
(20)

in which Qi is the point charge of QM atom i and Rij is the
distance between QM atom i and MM atom j. We define

EQM MM
elec,ME0

as the electrostatics calculated by the electrostatic

potentials instead of point charges

E E q
j

j jQM MM
elec,ME

QM
0 0 00

= [ ] +
(21)

Now, the difference between the EE and ME schemes can be
explained as
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The first term originates from the effect of the MM
environment on the electrostatic potentials, and the second
term reflects the influence of the point charge approximation.

2.4. Workflow of the Reweighting ME REANN
Method. In our method, a three-step procedure is employed
to obtain the potential of mean force (PMF) of a reaction with
REANN/MM potentials, as described below:
(1) To address the QM/MM boundary, the pseudobond

approach43−45 is applied, where any covalent bond
formed between the QM and MM subsystems is
described by a pseudobond. This pseudobond is
independent of the molecular mechanical force field
and offers a smooth connection between the QM and
MM subsystems without introducing additional degrees
of freedom into the system. Consequently, the QM
subsystem remains independent of the MM environ-
ment. A series of QM configurations are selected from
MD simulations, and their energies, forces, and ESP
charges are calculated in the gas phase by Gaussian 16
software.55 Then, the PES and the surface of point
charges are constructed by the QEq-REANN package.

(2) MD simulations are performed on the REANN-
predicted PES and the partial charge surface. With
umbrella sampling56,57 and MBAR analysis, we obtain
the PMF along the reaction path in the ME scheme and
the unbiased MBAR weight for each sample.

(3) Finally, the PMF of the ME is reweighted to the EE
scheme using wTP58,59 as outlined in our group’s
previous paper.39 Whereas, the PMF curve corrected by
wTP is often contaminated by statistical noise,58 which
is further smoothed by Gaussian process regression
(GPR).60

3. COMPUTATIONAL DETAILS
To test the validity of our method in enzyme reactions, we
focused on the acylation of COX by aspirin. For detailed
information about ab initio QM/MM-MD simulations and the
PES training process, please refer to the Supporting
Information, while the details of REANN/MM-MD simu-
lations are outlined below.

3.1. Construction of PES and Point Charge Surface.
The energies and ESP charges of the QM subsystem were
calculated by Gaussian 16 software55 on the B3LYP level. To
eliminate the dependence on molecular orientation, the ESP
charges were calculated in the standard orientation by Hu, Lu,
and Yang charge fitting method using Gaussian’s standard
atomic densities (HLYGAt).61 As illustrated in the computa-
tional details in the Supporting Information, 5000 and 27,021
ab initio points were selected from the trajectories of QM/
MM-MD and REANN/MM-MD simulations by farthest point
sampling (FPS)62,63 to fit the final PES and surface of charges,
respectively, which were used to simulate the acylation of
COX-1, COX-2, and R513A of COX-2. The final surface of
potential energy and point charges were constructed with
similar hyperparameters: the neural network for descriptors
and atomistic energy or electronegativity contains two hidden
layers with 64 neurons for each and one residual NN block, the
maximum angular momentum is 2, and 8 radial Gaussian
functions are linearly combined for any given angular
momentum. The number of message-passing iterations is 2
for both the PES and the surface of charges. The L2
regularization coefficient for the ESP surface was set to

Figure 2. (a) The mechanism of aspirin acylating COX, whose first step is rate-limiting. (b) Illustration of the division of the QM/MM system for
the acetylation reaction of COX. All atoms colored in blue are QM atoms, zero atoms are in green, and the pseudoatom is in red. All the left atoms
in the system are MM atoms. (c) Overlap of the structures of COX-1 and COX-2 at the EI state. The carbon atoms are colored green in COX-1
and cyan in COX-2. The residue 513 is HIS in COX-1 and ARG in COX-2.
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0.005, the dropout probability was set to 0.25, and the early
stopping strategy was incorporated to suppress overfitting.

3.2. REANN/MM-MD Simulations. We performed
REANN/MM-MD simulations for three enzyme reactions
under the same conditions as those used in B3LYP/MM-MD
simulations. As illustrated in Figure 2b, the reaction coordinate
is defined as dOG‑HG - dC‑OG. Sixteen windows centered at
reaction coordinates from −2.0 to 0.2 Å were used in umbrella
sampling. The force constants of the bias restraint were ranging
from 30 to 70 kcal mol−1 Å−2. 500 ps REANN/MM-MD
simulation under NVT conditions for each window was
performed at 310 K with a time step of 1 fs through the
interface developed by ourselves with Amber.64 The
configurations were saved every 0.1 ps for wTP correction
and further analysis. MBAR analysis was employed to calculate
the free energy curve and then it was corrected to the EE
scheme by wTP followed by GPR.

4. RESULTS
4.1. QM/MM-MD Simulations. Aspirin, an ancient anti-

inflammatory drug, primarily targets cyclooxygenase-2 (COX-
2) in its pharmacological action.65,66 By acetylating Ser530 in
the active site of COX-2, aspirin covalently modifies the
enzyme, thereby hindering the proper binding of arachidonic
acid, the native substrate of COX-2.67,68 However, it lacks
COX-2 specificity, which will lead to side effects, such as the
gastric ulceration.69,70 From our previous studies,71 the
inhibition potency difference between the two COX subtypes
mainly comes from the acylation of COX by aspirin, which
proceeds in two successive stages and the initial step is rate-

limiting (see Figure 2a). In that work, a spheric boundary
condition was adopted using QChem-Tinker interface.72

Because the Amber program mainly employs periodic
boundary conditions (PBCs) to simulate the behavior of
molecules in solvents, we restudied the first step by QM/MM-
MD simulations using QChem-Amber interface in this work.72

Figure 3a presents the free energy profiles of this step with
B3LYP/MM-MD simulations for both subtypes of COX. The
shapes of the two curves are similar to a high-energy
intermediate. The free energy barriers are 15.9 ± 0.2 and
18.4 ± 0.4 kcal mol−1 for COX-1 and COX-2, respectively,
consistent with the experimental findings that aspirin is 10−
100 times more potent against COX-1 than against COX-
2.73,74 Then, the free energy curves serve as a benchmark to
check the REANN/MM-MD simulations.

4.2. Model Fitting of PES and Point Charge Surface.
The QM subsystem contains 26 atoms, including aspirin and
the side chain of Ser530, which directly participates in the
acylation reaction (as illustrated in Figure 2b). The rest of the
atoms of the enzyme are in the MM subsystem, including the
main chain of Ser530. Therefore, there is a covalent bond
connecting the QM and MM subsystems, which is addressed
by the pseudobond approach43−45 in this work. In this
approach, the QM subsystem is closed-shell, and no additional
degrees of freedom are introduced into the system. In the ME
scheme, the QM subsystem is independent of the MM
environment, and its neural network surfaces for potentials and
charges can be constructed independently and applied to
various MM environments.

Figure 3. (a) Reweighted FE profile for the acylation of COX-1 and COX-2 calculated by the B3LYP/MM-MD, direct REANN/MM-MD, and
reweighted REANN/MM-MD simulations with GPR smoothing. The 95% confidence intervals are also presented. (b) The variation of average
bond distances along the reaction coordinate during MD simulations for COX-1 and COX-2.
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Farthest point sampling (FPS) was used to select points to
mimic the original distribution, and a set of bond lengths were
employed as descriptors in this work. QM calculations are
unable to provide the gradients of point charges, so more data
points are required for charges to achieve satisfied accuracy
when the PES has already converged, as detailed in the
Supporting Information. 5000 and 27,021 ab initio points were
finally selected to fit the PES and surface of charges,
respectively.62,63 The root-mean-square errors (RMSE) for
final surfaces are only 84 mkcal mol−1, 248 mkcal mol−1 Å−1,
and 0.016 e for the total energy, force, and charge on the
training set, respectively (Table 1). As illustrated in Figure S1,

the predicted energies, forces, and charges in vacuo exhibit
high consistency with the reference values. Such a high quality
of the surfaces ensures the reliability of the following MD
simulations. In addition, the smoothness of the charge surfaces
would influence the consistency of the QM-MM interaction
energy over different configurations. Therefore, we have
plotted the charge surfaces for four atoms as a function of
two bond lengths related to the reaction coordinate with the
rest coordinates fixed at the values of the reactant state in
Figure S2, which demonstrates its smooth nature.

4.3. REANN/MM-MD Simulations of COX-1 and COX-
2. We did 500 ps REANN/MM-MD simulations for COX-1
and COX-2 along the reaction path with umbrella sampling.
The trajectories of the MD simulations for 16 windows are all
stable, which demonstrates that our surfaces are robust enough
to describe the dynamics of the reaction. Then, the PMF in the
ME scheme was determined by MBAR analysis. Next, the PMF
was reweighted to the EE scheme by wTP correction. To test
the convergence of wTP, we calculated the PMFs with
different time intervals for sampling harvesting. As illustrated in
Figures S3 and S4, the PMF curves corrected by wTP are
contaminated by statistical noise and become smoother with a
shorter harvested time, which means that this noise can be
weakened by increasing sampling frequency. Finally, the PMF
was smoothed by GPR. Figure S3 compares the free energy
profiles of COX-1 and COX-2 before and after GPR. The
reliabilities of the wTP correction are also discussed in the
Supporting Information.

Figure 3a compares the PMFs of B3LYP/MM-MD,
REANN/MM-MD, and REANN/MM-MD with the GPR-
smoothed wTP correction for COX-1 and COX-2. The three
PMFs exhibit similar shapes with the transition states (TSs)
located approximately at the reaction coordinate of −0.5 Å for
COX-1 and −0.4 Å for COX-2. After the wTP correction with
a harvested time of 0.1 ps, the barriers are within a range of
±0.3 kcal mol−1 compared with the reference values.
Considering that the two subtypes of COX are 40% different
in sequence, this proves the robustness and universality of our
surfaces. To our surprise, even without wTP correction, direct
REANN/MM-MD simulations can already reproduce the
PMF of B3LYP/MM-MD simulations well. The free energy
barriers of REANN/MM-MD and B3LYP/MM-MD differ by
less than 0.5 kcal mol−1 (see Table 2), which means that the
sampling spaces of the two Hamiltonians in the ME and EE
schemes might be quite similar.

To further check the reliability of our surfaces, 8000 points
were randomly chosen from MD simulations for COX-1 and
COX-2 as test sets. The RMSEs of energy, force, and charges
for the test sets are comparable to those for the training sets
(see Table 1). We also examined all the configurations of the
QM subsystem from the trajectories of REANN/MM-MD
simulations, and less than 1‰ MD samples are outside the
boundary of the training set for the reactions, which means
that the training set sufficiently covers the possible sampling
space of MD simulations for COX-1 and COX-2.

4.4. Computational Expense. The computational speed
was evaluated on an Intel Xeon CPU E5-2680 2.50 GHz with
24 cores. Because the B3LYP/MM-MD simulation is
expensive, we only did 50 ps B3LYP/MM-MD simulations
for each window. To make a direct comparison, we estimated
the wall-clock time of 500 ps B3LYP/MM-MD simulations by
multiplying the time of 50 ps by a factor of 10. First, a lot of
effort has been made to construct the surfaces, including
single-point energy calculations and attempts to run REANN/
MM-MD simulations. Fortunately, this initial setup is once and
forever. As listed in Table S2, the following REANN/MM-MD
simulations take 203 h for COX-1, which is 82 times faster
than the 16,701 h required by B3LYP/MM-MD. In the
reweighting stage, single-point calculations were performed on
the B3LYP/MM level for those points sampled from REANN/
MM-MD trajectories at regular intervals, so its wall-clock time
depended on the harvested time. A harvested time of 0.1 ps
requires an additional 181 h in this stage. Convergence tests in
our group’s previous work39 and Figure S4 demonstrate that
0.5 ps harvested time is sufficient, allowing for an 80%
reduction in reweighting time.

Table 1. Root Mean Square Errors (RMSEs) for the Final
Surfacese

procedure
energy

(mkcal mol−1)
force

(mkcal mol−1 A−1)
charge
(10−3 e)

training 84.33 247.55 16.15
validation 111.03 301.70 12.48
test1a 86.38 281.64 13.52
test2b 99.19 295.52 13.45
test3c 106.72 296.70 14.92
test4d 91.29 265.07 14.66

a8000 configurations sampled from 500 ps REANN/MM simulations
for COX-1. b8000 configurations sampled from 500 ps REANN/MM
simulations for COX-2. c8000 configurations sampled from 500 ps
REANN/MM simulations for R513A. d8000 configurations sampled
from 50 ps B3LYP/MM simulations for R513A. eThe training set
consists of 5000 configurations for energy (mkcal mol−1) and force
(mkcal mol−1 A−1) and 27,021 configurations for charges (10−3 e).
The validation set consists of 3977 configurations randomly sampled
from the trajectories of B3LYP/MM simulations for COX-1 and
COX-2. Each test set consists of 8000 configurations randomly
sampled from the trajectories of MD simulations.

Table 2. Free Energy Barriers (in kcal mol−1) for the Three
Enzyme Reactions

enzyme
direct

REANN/MMa
reweighted

REANN/MMa B3LYP/MMb

COX-1 16.1 ± 0.2 15.8 ± 0.3 15.9 ± 0.2
COX-2 18.2 ± 0.1 18.1 ± 0.4 18.4 ± 0.4
R513A 17.3 ± 0.1 17.0 ± 0.3 16.9 ± 0.3

aThe statistical error was estimated by the free energy difference
between 100−300 ps and 300−500 ps. bThe statistical error was
estimated by the free energy difference between 10−30 ps and 30−50
ps.
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4.5. Prediction of the Inhibition Potential of Aspirin
on R513A of COX-2. In the ME scheme, the “offline-
trained”75 ML potentials and charge surfaces are independent
of the MM environments. Ideally, if the training set is carefully
prepared to comprehensively cover the whole sampling space,
the REANN surfaces can be employed in various MM
environments, for example, a different enzyme with the same
active site. Here, we used the newly developed potential and
charge surfaces to study the acetylation reaction of a mutant of
COX-2 to check the robustness of these surfaces.
In our group’s previous work,71 we calculated the

contribution of individual residue to the stability of transition
state of acetylation. Close to the binding pocket, most residues
of the two COXs are conserved and have similar effects on the
TS stability as depicted in Figure 4 of previous work,71 which
means that they are not responsible for the different inhibition
potency of aspirin on COX-1 and COX-2. One exception is
that the positive residue Arg513 in COX-2, while its
counterpart in COX-1 is His513 (Figure 2c). Compared
with His513 in COX-1, Arg513 in COX-2 increases the
activation barrier of the acetylation reaction by about 2 kcal
mol−1. An analysis of the conformational changes during the
acylation illustrates that the interaction between the positively
charged guanidinium group of Arg513 of COX-2 and the
negatively charged carboxylic group of aspirin would disfavor
the protonation of the aspirin’s carboxylic group during the
reaction process.71 Consequently, the mutation of Arg513 to a
nonpolar residue is expected to lower the energy barrier of
COX-2.
In this work, to examine the effect of the guanidinium group

of Arg513 of COX-2, we calculated the free energy curve for
the R513A mutant by REANN/MM-MD simulations. The
mutation resulted in a decrease in the free energy barrier by
about 1.1 kcal mol−1, confirming our hypothesis in previous
work,71 that the positively charged guanidinium group of
Arg513 of COX-2 hinders the inhibition of aspirin. Unlike the
wild-type COX-2, no information concerning the R513A
mutant was used when we constructed surfaces. Nonetheless,
the REANN/MM-MD still closely reproduced the curve of
B3LYP/MM-MD well (Figure 4a) with a deviation under 0.5
kcal mol−1. 8000 points were randomly chosen from MD
simulations as a test set, and the RMSE was only 107 mkcal
mol−1 for energy as listed in Table 1. We also calculated the
PMFs for various sampling durations, and the corresponding
energy barriers are listed in Table S3. Evidently, the longer the

simulation time, the smaller the uncertainty of the barrier.
While any MD simulations with a duration of 50 ps can
reproduce the energy barrier observed in 100−500 ps
simulations with an error of less than 0.6 kcal/mol. In
addition, the free energy profiles of R513A with different
simulation time intervals (Figure 4b) also demonstrate that 50
ps simulation is enough for the REANN/MM-MD simulations
to converge. Therefore, in order to save computational costs,
50 ps MD simulations are acceptable. In summary, our surfaces
can be applied to study the properties of mutants rapidly and
accurately.

5. DISCUSSION
The PMFs in the ME and EE schemes are highly comparable
for COX-1 and COX-2 (Figure 3a), which indicates a
substantial overlap in the phase space between the
Hamiltonians of the two schemes. To further prove the
overlap in the phase space, a comprehensive analysis of the
structures in the ME and EE schemes was conducted from
various perspectives.
We examined the variation of key distances along the

reaction coordinate during QM/MM-MD simulations (Figure
3b). In the first step of acylation, the oxygen atom of the
hydroxyl group of Ser530 (OG) attacks the carbonyl carbon
atom (C) of aspirin to form a metastable tetrahedral
intermediate (TI), and meanwhile, the carboxyl group of
aspirin (O1) serves as the general base to abstract the proton
(HG) from the hydroxyl group of Ser530 (Figure 2a). Three
distances are involved in this step: dC‑OG, dOG‑HG, and dO1‑HG
(as labeled in Figure 2b). The three distances change
monotonically, and the O−H bond does not break until the
C−O distance has shortened to about 2 Å. The transfer of H
to the carboxyl group of aspirin does not occur before the
attack of the O atom at the carbonyl carbon of aspirin, which
illustrates that they are concerted steps to form the tetrahedral
intermediate. The change of the distances is almost the same in
the two schemes for both COX-1 and COX-2, demonstrating
that the sampling spaces of the EE and ME schemes overlap
significantly during MD simulations. This may be the reason
that the PMF of the ME scheme is very close to that of the EE
scheme even without wTP correction.
A detailed decomposition analysis of QM-MM electrostatics

is conducted to examine the similarity of Hamiltonians
between the two schemes. Figures 3a and 4a reveal that the
energy barriers of the two schemes do not differ much, which

Figure 4. (a) Comparison of free energy profiles for R513A of COX-2 by the B3LYP/MM-MD, direct REANN/MM-MD, and reweighted
REANN/MM-MD simulations with GPR smoothing. The 95% confidence intervals are also presented. (b) The free energy profiles of direct
REANN/MM-MD simulations of 10−50, 50−300, and 300−500 ps.
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means that the change of the environment effect along the
reaction path is similar in both the ME and EE schemes.
Equation 22 suggests that the ME scheme can be viewed as an
approximation of the EE scheme. The discrepancies between
them originate from two aspects: the influence of the MM
environment on the electrostatic potentials (termed the ME
approximation, labeled ΔΕ1 in Figure 5), and the point charge
approximation (labeled ΔΕ2 in Figure 5) in the gas phase. The
two effects are plotted in Figure 5 for the reactant and TS
states. Clearly, the comparison of ΔΕ1 illustrated that the MM
environment could stabilize the whole system with a similar
effect at both the TSs and reactant states, which might be due
to the rigidity of enzymes. Although the point charge
approximation in the gas phase is not a perfect approximation
for this QM subsystem, it performs better at the TSs than at
the reactant state. When considering the statistical average of
the combined effects, the total difference in the free energy
between ME and EE schemes remains almost constant along
the reaction path. Is this phenomenon a coincidence for COX,
or do all enzyme reactions possess similar characteristics?
Further research on more enzyme reactions is necessary to
address this question.
On the other hand, the wTP is time-consuming with

additional QM calculations and always statistically contami-
nated. Therefore, a correction might not be necessary for such
a small difference between the ME and the EE schemes.
However, we cannot guarantee that the difference will always
be small in all of the enzyme reactions. Therefore, it is
beneficial to develop a universal correction model for arbitrary
systems. In recent studies, a variant of the electrostatic
embedding scheme was proposed by Kirill Zinovjev that allows
training potentials of the EE scheme in vacuo, in which the
responses of the QM subsystem to the MM environment were
calculated by the atomic polarizabilities model with Thole
damping.76,77 The Semelak group also proposed a polarizable
ME model using minimal basis iterative stockholder (MBIS)

atomic charges in vacuo calculations.78 These methods suggest
that on-the-fly corrections may be feasible if the polarization of
the QM subsystem by the environment can be accurately
measured using a limited number of parameters.

6. CONCLUSIONS
Simulation of large systems through machine learning potential
is still a challenge, especially for enzyme reactions. Analogous
to hybrid QM/MM, directly integrating the ML potential with
the MM force field is currently the most promising solution to
achieve the balance between computational cost and accuracy.
In this work, we have proposed a simple, efficient, and
universal ML/MM model to study the dynamics of enzymes
and mutants, which is capable of tracing the QM charge
gradient and partially bridging the gap between the EE and ME
schemes. In our model, REANN and QEq-REANN surfaces
are fitted for potential energies and point charges of QM
atoms, respectively. To ensure the conservation of the total
charge in the close-shelled QM subsystem, the charge
equilibration method is encoded into the REANN package.
The validity of our model is supported by the acylation of
COX by aspirin, where the free energy barriers agree well with
B3LYP/MM MD simulations, with an 80-fold speed-up. One
key feature of our model is that the surfaces are trained in
vacuo for the QM subsystem, making them independent of the
MM atomic properties. Theoretically, they can be applied to
any mutant with the same active site. Ultimately, the surfaces
were successfully applied to R513A of COX-2 to reproduce the
energy barrier of B3LYP/MM MD simulations with a
deviation of less than 0.5 kcal mol−1.
In summary, our strategy offers a promising approach to the

modeling of enzyme reactions. We will further develop this
method to ensure that it can be applied to a general case. New
strategies will be adopted to speed up the training process for
charge prediction and span the relevant chemical and
conformational space automatically and universally, for

Figure 5. 8000 configurations are chosen from each window of MD simulation, and the energy differences between the ME and EE schemes are
analyzed for (a) COX-1 and (b) COX-2. ΔE is the energy difference between the B3LYP/MM and REANN/MM and can be decomposed into

ΔE1 and ΔE2. ΔE1 is the energy difference between the potential model of the EE and ME schemes, namely EEE ME0
in eq 22. ΔE2 is the energy

difference between the potential and point charge models in the ME scheme, namely EME ME0
in eq 22.
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example, adopting molecular descriptors, like SOAP,79,80 or
generating configurations through uncertainty-driven active
learning strategy.81,82 On the other hand, we have only tested
the acetylation of COX by aspirin, which is well-described by
the ME scheme without polarization effects in the QM region.
Therefore, more complex cases are required to verify its
general validity. For general reactions, the wTP correction can
be employed to compensate for the difference between the ME
and EE schemes. In addition, on-the-fly corrections from the
ME to EE scheme can be employed to reproduce more reliable
results for complex cases. We anticipate that this method will
soon open up avenues for high-throughput virtual screening of
enzyme evolution.
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