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General reactive element-based machine 
learning potentials for heterogeneous 
catalysis
 

Changxi Yang1,2,5, Chenyu Wu1,3,5, Wenbo Xie    1,5  , Daiqian Xie    3 & P. Hu    1,4 

Developing truly universal machine learning potentials for heterogeneous 
catalysis remains challenging. Here we introduce our element-based 
machine learning potential (EMLP), trained on a unique random exploration 
via imaginary chemicals optimization (REICO) sampling strategy. REICO 
samples diverse local atomic environments to build a representative dataset 
of atomic interactions, making the EMLP inherently general and reactive, 
capable of accurately predicting elementary reactions without explicit 
structural or reaction pathway inputs. We demonstrate the generality and 
reactivity of our approach by building a Ag-Pd-C-H-O EMLP targeting Pd–Ag 
catalysts interacting with C/H/O-containing species, achieving quantitative 
agreement with density functional theory even for complex scenarios such 
as surface reconstruction, coverage effects and solvent environments, cases 
for which existing foundation models typically fail. Our method paves the 
way to replace density functional theory calculations for large and intricate 
systems in heterogeneous catalysis, and offers a general framework that can 
readily be extended to other catalytic systems, and to broader fields such as 
materials science.

For decades, quantum chemistry, particularly density functional theory 
(DFT), has been indispensable in offering microscopic insights into 
catalytic reactions and profoundly influencing the field of heterogene-
ous catalysis1,2. Despite its successes, it has recently reached a plateau: 
its application is severely limited by the computational costs associ-
ated with the scaling of quantum mechanical calculations. This scaling 
issue makes the study of large, complex systems or the exploration of 
dynamic and complex reaction networks impractical3. At the same 
time, empirical methods, such as classical force fields, provide a less 
costly approach to simulate reactions but at the expense of quantitative 
accuracy and generality compared to quantum mechanical methods. 
The emergence of neural-network-based machine learning potentials 
(MLPs) began to mitigate this compromise, achieving computational 

efficiency similar to classical force fields while maintaining DFT-level 
accuracy4–6. The rapid innovations in MLP models, including LASP7,8, 
DeepMD9, REANN10, NequIP11 and MACE12, along with training strategies 
such as active learning13–15 and delta-learning16,17, are constantly refining 
the capability of MLPs and their predicting power. However, the general-
ity of MLPs to perform on-the-fly calculations of arbitrary structures, 
as DFT can, remains a distant goal in heterogeneous catalysis.

Current MLP sampling approaches in heterogeneous catalysis 
are predominantly system dependent because they are trained on 
datasets containing very specific configurations of structures. They 
usually begin with different phases or facets of the catalyst, vary the 
orientation and number of reactants/products on the catalyst, and 
use molecular dynamics (MD) simulations to sample atomic positions 
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Reaction lies at the heart of heterogeneous catalysis, but devel-
oping a reactive MLP is also challenging for two reasons. First, the 
structural space is enormous, and exhausting such a vast space is a 
daunting, if not impossible, task. Second, traditional MLP training 
requires sampling sufficient structures that are similar to the transi-
tion state for each elementary step that may be encountered in any 
reactive system. However, any such transition states are difficult to 
locate, even using DFT, due to the peculiar nature of transition state 
structures in the energy landscape. Hence, the initial and final states 
in a reaction can be predicted with reasonable accuracy, but transition 
states result in notable errors with traditional MLPs. A recent study 
by Ceder and co-workers has shown a systematic softening issue 
in current foundation models due to the near-equilibrium atomic 
arrangements in their database and the lack of high-energy states28. 
Therefore, reactive MLPs typically employ targeted, model-aware 
sampling strategies that rely on chemical intuition for the chemical 
space involved in targeted reactions. Methods such as stochastic 
surface walking, enhanced sampling or microkinetic model-guided 
approaches are used to sample rare chemical reaction events7,21,29,30. 
Such strategies thus often require sampling every potential reac-
tion pathway, a task that is both extremely challenging and resource 
intensive as the training dataset grows. Even so, the resulting MLP 
would be tuned to only perform well on the reaction network for 
which it is trained.

and to explore reactive chemical space18–20. For example, Liu et al. 
built a Cu-Zn-C-H-O MLP to explore reaction pathways for methanol 
synthesis from CO and CO2 on ZnO/Cu catalysts, revealing the domi-
nance of CO2 hydrogenation and the complex effects of zinc coverage 
on catalyst activity21. Han et al. utilized a Zn-Cr-O MLP to investigate 
the chromium-doped ZnO ternary system on the ZnO(1010) surface, 
exploring the influence of chromium and oxygen vacancies on CO 
activation for syngas conversion22,23. These system-dependent MLPs 
are good at predicting the targeted reaction systems, often achieving 
root mean square error (RMSE) of energies <5 meV per atom. However, 
their application is inherently limited to the targeted systems.

Beginning with well-organized surface structures inevitably 
results in a multitude of similar local environments. This is particu-
larly true when using the widely adopted slab model, which typically 
includes layers with very similar atomic arrangements. This leads to 
the consensus that MLPs can only predict the energies of the structures 
(or similar structures) for which they have been previously trained24. 
Another issue is that many systems in heterogeneous catalysis are 
too computationally demanding if sampled this way or have lim-
ited known structures, such as catalysts with multicompositions, or 
reaction systems involving solvent environments20,25 and coverage 
effects26,27. It is fair to state that the generality of MLPs is arguably the 
most challenging problem if they are going to replace DFT as the main 
computational engine.
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Fig. 1 | Summary of the REICO sampling, EMLP training workflow and 
applications. a, Workflow for the EMLP. Initially, a proto-EMLP can be trained 
using a small dataset of random structures and low-precision DFT relaxation. 
In the REICO-sampling phase, additional random structures are relaxed using 
the proto-EMLP (alternatively, perform all relaxations with low-precision DFT). 
The dataset is then supplemented by stable structures with sampling techniques 
to enrich the local atomic environment in the dataset, as the stable, highly 
symmetric atomic arrangments are unlikely to be visited by REICO. The dataset is 

then balanced through a multistage selection scheme, utilizing force histograms 
and cosine similarity paired with the SOAP descriptor. The final dataset 
undergoes high-precision DFT calculations before training the EMLP. b. Example 
structures and the system size distribution of the Ag-Pd-C-H-O EMLP training 
dataset. As can be seen, most calculations were performed on systems containing 
~15 atoms. c. As the EMLP can perform on-the-fly calculations of arbitrary 
structures that are not directly targeted during training, it can replace DFT in a 
series of benchmark calculations representative of heterogeneous catalysis.
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In this work, we introduce our element-based machine learning 
potential (EMLP) approach, which focuses on learning the diverse inter-
actions between elements rather than relying on fixed structural arrange-
ments or predefined reaction coordinates. Central to our approach is 
random exploration via imaginary chemical optimization (REICO), a 
sampling procedure that constructs datasets that are detached from 
structural space and focus solely on atomic interactions. As previous 
works by Deringer et al.31,32 and Smith et al.33 reported, adding a level of 
randomness can enhance the robustness and generality of the MLP. The 
REICO method avoids traditional dependencies on a specific system; 
instead, it uses complete randomness sampling. Leveraging small sys-
tems composed of randomly generated structures and their subsequent 
optimization trajectories, our EMLP can proficiently navigate a vast 
array of unique local atomic environments. Such a strategy significantly 
enhances the diversity and representativeness of training datasets, 
thereby extending the applicability of MLPs across a broader spectrum 
of chemical systems. The resulting EMLP can tackle arbitrary reactive 
catalytic processes without needing to sample the reaction pathways. 
To demonstrate, we built an EMLP that contains five elements: palladium 
and silver, which are commercially used as metal catalysts, along with 

carbon, hydrogen and oxygen, which form various reactants in hetero-
geneous catalysis. We conducted a comprehensive set of generality tests 
and benchmarks, from data diversity analysis to MD behaviours. We have 
also applied the EMLP to various reaction systems in heterogeneous 
catalysis and beyond. Across this broad spectrum of applications, the 
EMLP can predict results that are consistent with chemical intuition and 
DFT calculations, without the need for retaining or fine-tuning. In addi-
tion, we have benchmarked our potential with a MD-MLP trained using a 
traditional MD sampling method, and with MACE-mp34, EquiformerV235 
and M3GNet36, three well-recognized foundation models trained on 
millions of DFT data. Across the wide array of tested systems, the EMLP 
consistently outperforms other models.

Results
REICO-generated dataset
Building an EMLP requires only knowledge of the involved elements, 
with no domain expertise necessary. Figure 1 outlines the EMLP 
training workflow, designed to efficiently map and adapt to vari-
ous local atomic environments within the chemical space (see also 
Supplementary Figs. 1–5). To verify that our approach achieves the 
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Fig. 2 | Analysis of the RECIO-generated dataset and dimer scan performance. 
a,b, Data diversity and coverage analysis of the whole dataset generated by MD 
(a) with structures from a public database compared to REICO (b) in this work. 
The x axis shows the per-atom energy, the y axis is the Steinhart order parameter 
(OP) which measures the distribution of local atomic arrangements (arbitrary 
units), and the colour (z axis) is the number of data points in each energy–OP bin 
(log10 scale/counts). The visualizations highlight that the REICO dataset not only 
covers most regions sampled by the MD dataset but also expands beyond them 
substantially in terms of energy and local atomic environments. c. Generality 

tests conducted through rigid dimer scans, which are absent from the training 
datasets, making them ideal for assessing the generality of the EMLP. The tests 
involve ten dimer combinations of self- and cross-interactions between the 
elements silver, palladium, carbon, hydrogen and oxygen. Results from DFT 
calculations serve as the benchmark, and are compared with predictions from 
the EMLP, MACE-mp and EquiformerV2. M3GNet failed to perform the dimer 
test. The EMLP results align closely with the DFT benchmarks, whereas the 
MACE-mp and EquiformerV2 predictions deviate substantially. The colour code 
is as in Fig. 1.
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intended diversity and generality, it is crucial to quantitatively assess 
the generated datasets. We first analysed the diversity and complete-
ness of our dataset compared to traditional methods. We created a 
benchmark MLP dataset using conventional MD techniques, selecting 
initial structures from the M3GNet database36 that contained different 
combinations of the elements silver, palladium, carbon, hydrogen and 
oxygen. Figure 2a,b and Supplementary Fig. 7 provide visualizations of 
these high-dimensional datasets in terms of atomic energy and local 
atomic environments. It shows a comparison between the datasets 
generated by our REICO (112,732 structures) and traditional MD (104,104 
structures). The REICO dataset, not only encompasses most of the scope 
of the MD dataset but also has a coverage significantly greater than the 
chemical space covered by MD sampling. The atomic interactions within 
the MD-sampled structures are similar, especial for metal elements 
where the periodic and symmetric nature of stable metal structures 
from public databases prevails. This can ultimately lead to overfitting, 
as the model becomes overly specialized in recognizing these familiar 
patterns and fails to generalize well to new, unseen systems.

Generality tests
The EMLP is designed for broad applicability across diverse chemi-
cal systems, extending beyond the specific configurations on which 

it was trained. To demonstrate its range, we conducted a series of 
benchmarks.

First, we started with basic atomic interactions. As shown in Fig. 2c, 
we evaluated the performance of the EMLP by comparing the interac-
tions between all dimer combinations of silver, palladium, carbon, 
hydrogen and oxygen (see also Supplementary Figure 8 for the rest). 
These dimers, not specifically present in our training dataset, serve to 
test the EMLP across a range of bond lengths, showcasing the EMLP’s 
capability to accurately replicate DFT results. Our EMLP predictions 
align closely with DFT calculations, effectively capturing the repulsion 
at shorter interatomic distances and accurately depicting the decreas-
ing force as the atoms move apart—something that other models fail to 
achieve. These characteristics are crucial to allow the EMLP to perform 
robust and accurate MD simulations without experiencing unphysical 
holes (see below). In comparison, M3GNet fails to predict the forces in 
these dimer systems; EquiformerV2’s predictions deviate substantially 
from DFT; and although MACE-mp performs better than the other two 
and approaches EMLP-like performance, it still shows an average error 
of around 10% relative to DFT.

Next, we wanted to assess whether the predicted forces yield 
physically meaningful dynamics. We performed MD simulations on 
free clusters of Ag28O22 and Pd34O56. MD simulations were performed 
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at 700 K and ran for 500 ps (15 ps for DFT). The snapshots are shown in 
Fig. 3a. Notably, only EMLP’s trajectories align well with the DFT refer-
ence, while the other models show unphysical holes (oxygen atoms 
form O2 and leave the cluster), causing deformations. Furthermore, to 
investigate the EMLP’s ability to capture subtle energetic changes in 
finite systems, a critical requirement for studying catalyst behaviour 
under reaction conditions, we performed MD simulations on three dis-
tinct cluster models: a pure silver cluster, a pure palladium cluster and 
a bimetallic Pd/Ag cluster. As shown in Supplementary Fig. 9, the EMLP 
consistently reproduces the DFT energy trends across the snapshots, 
demonstrating its ability to handle subtle structural rearrangements 
and energetic changes. In contrast, other models show notable devia-
tions for one or more of the tested cluster systems.

Finally, large and complex adsorbates. There are many reaction 
systems that are just too hard to sample using system-dependent 
sampling methods, especially for large reactants such as perylenetet-
racarboxylic dianhydride (PTCDA) which have more than 100 atoms. 
Previous studies, including experimental work by Hauschild et al.37 and 
DFT analysis by Ruiz et al.38, established consistent configurations of 
PTCDA adsorbed on the Ag(111) surface. However, building a MLP that 
provides accurate results for such a system often involves complex 
and computationally intensive sampling. To demonstrate the robust 
learning capabilities of our EMLP, which contains mostly training data 
with 5–30 atoms, we addressed the challenge of the PTCDA system con-
taining 364 atoms. When relaxing PTCDA on Ag(111), shown in Fig. 3b, 
EMLP-produced geometries align closely with DFT results, accurately 
capturing both the shape of the adsorbed molecule and its vertical 
distance to the surface. In contrast, EquiformerV2 yields a nearly flat 
PTCDA structure but places it at an incorrect distance from the surface. 
M3GNet and MACE-mp generate structures with noticeable distortions 
(for example, bending or arching of PTCDA), suggesting that these 
models struggle with complex, flexible adsorbates.

Reaction systems in heterogeneous catalysis
In this section, we focus on three particularly challenging aspects 
of reactions in heterogeneous catalysis: complex catalyst surfaces, 
surface coverage and extended reaction networks. To demonstrate 
our EMLP’s advantages for describing reactivity, we selected several 
classic reaction systems, including CO oxidation, acetylene hydro-
genation, the Fischer–Tropsch process and ethylene epoxidation 
(Supplementary Fig. 10). We also evaluated M3GNet, EquiformerV2 
and MACE-mp, paying special attention to transition state searches.

CO oxidation, one of the most used model systems in the study 
of heterogeneous catalysis, has greatly contributed to advances in 
fundamental catalytic research. Recent studies have highlighted the 
CO-induced reaction-driven metal–metal bond breaking in metal 
catalytic surfaces even under relatively mild conditions39,40. These 
findings emphasize the need for theoretical predictions of poten-
tial surface reconstructions under reactive conditions, which would 
enhance our understanding of active sites on metal catalysts and guide 
future experimental efforts. To test whether our EMLP can recognize 
different surface facets, we built three kinds of surfaces to test the 
reactivity of the models, namely, simple surfaces (Pd(100), Pd(110), 
Pd(111)), special surfaces (twinned boundary palladium and nanorod 
structure palladium), and various palladium-on-Ag(111) surfaces (Pd/
Ag(111) single-atom catalyst, palladium adatom on Ag(111), palladium 
clusters on Ag(111) and palladium-line/Ag(111)). As shown in Fig. 4, the 
EMLP consistently delivers the most accurate reaction barriers and 
enthalpy changes. In contrast, MACE-mp and M3GNet often show 
significant deviations, especially near transition states. EquiformerV2 
can occasionally match EMLP’s accuracy on symmetric surfaces and 
bimetallic surfaces for barrier but struggles with enthalpy predictions.

Simulating surface coverage effects, a critical factor in surface 
reaction kinetics, using DFT approaches is notably time consuming26,27. 
The iterative method, currently considered state-of-the-art for 
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calculating reaction kinetics26,41,42, demands accurate knowledge of 
surface coverage effects, necessitating detailed configurations of all 
surface species interactions. To validate the reliability of our EMLP 
for such a system, we calculated the reaction pathways for acetylene 
hydrogenation on both clean Pd(111) and hydrogen-covered Pd(111) 
surfaces. As shown in Fig. 5, the energy profiles calculated by the EMLP 
for both coverage-independent and coverage-dependent reaction 
systems align closely with those calculated by DFT. Additionally, we 
tested the EMLP on metal alloys, particularly PdAg alloys, which are also 
highly regarded for acetylene hydrogenation from a previous work by 

Li et al.43. They found that the Pd/Pd1Ag1(111) surface with a hydrogen 
coverage of 1 ML (ML, monolayer) and the Pd1Ag3/Pd1Ag3(111) surface 
with a hydrogen coverage of 0.25 ML exhibited the lowest reaction 
energy barriers. Using the EMLP, we reproduced their DFT results for 
these surfaces, while the other models struggle to match this perfor-
mance. EquiformerV2 and MACE-mp are better than M3GNet in terms 
of energy predictions. This demonstrates that EMLP is not only capable 
of effectively capturing complex interspecies interactions on catalyst 
surfaces but also provides a robust platform for predicting reaction 
kinetics across various catalytic systems.
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Fig. 5 | Reaction predictions of C2H2 hydrogenation (the stepwise addition of 
hydrogen atoms to C2H2 to form C2H6) on various palladium-based surfaces 
with coverage effect. a–d, The surface model, the energy profile comparison 
between DFT and EMLP, and the reaction barrier difference of each transition 
state from different model predictions (EMLP, EquiformerV2, MACE-mp, and 

M3GNet). The surfaces are: Pd(111) (a), Pd(111) covered by 1 ML hydrogen (b), 
PdAg3(111) covered by 0.25 ML hydrogen (c) and PdAg(111) covered by 1 ML 
hydrogen (d). For a the reaction starts with the adsorption of C2H2 and H, whereas 
for b–d the reaction starts with adsorption of C2H2 and a H from the surface 
coverage. The colour code is as in Fig. 1.
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The Fischer–Tropsch process—one of the most important and 
complex reaction systems in heterogeneous catalysis—involves the 
elementary steps of chain initiation, chain growth and chain termina-
tion. The reaction systems include a large number of possible elemen-
tary steps and reaction intermediates. Here, we have selected a reaction 
pathway from C1 to C6. Although this process normally makes use of 
iron-based catalysts, for benchmarking purposes we are using Pd(100) 
as the catalyst in this case. The list of the elementary steps considered 
is shown in Supplementary Table 8. In Fig. 6a,c, we compare the entire 
energy profile predicted by our EMLP with the energy profile com-
puted using DFT. The close agreement between the EMLP and DFT 
curves across numerous steps and complex intermediates highlights 
the generality and accuracy of the EMLP in capturing the energetics 
of intricate catalytic reaction networks. In terms of the success rate 
of finding transition states, from Fig. 6b,d, EMLP and MACE-mp were 
able to successfully find the transition states in each step of the reac-
tion pathway, while EquiformerV2 failed to find the transition states 
in three reactions, R7, R12 and R21.

We have summarized the performance of our EMLP alongside 
two of the stronger foundation models, MACE-mp and EquiformerV2, 
across a range of heterogeneous catalysis reactions. In addition to 
evaluating energy predictions, we rigorously assessed the validity of 
the transition state (TS) structures predicted by each model through 
frequency calculations and structural similarity analysis. The aver-
age values for each system are listed in Table 1; details are shown in 
Supplementary Fig. 11 and Supplementary Tables 4–7 and 9. The 
EMLP achieves ~0.1 eV mean absolute error (MAE) for both Ea and ΔE 
across all the systems while maintaining a tight worst-case deviation 

(maximum deviation (MaxDev) ≤ 0.34 eV). In contrast, MACE-mp 
exhibits MAEs up to 0.59 eV and large outliers (MaxDev > 1.5 eV), 
and EquiformerV2 shows intermediate performance (MAE = 0.07–
0.36 eV, MaxDev > 1.4 eV). Equally important, the EMLP achieves 
100% transition‐state localization success and ≥ 96%geometric fidel-
ity in every case, whereas MACE-mp and EquiformerV2 struggle. Tak-
ing the Fischer–Tropsch example, from Supplementary Fig. 11, we see 
that the EMLP is the best in both error and transition-state structure 
similarity, and more importantly, it maintains a high degree of con-
sistency in such a complex catalytic reaction network. Namely, there 
is a certain correspondence between the transition-state energy 
error and the structure error. In contrast, both MACE-mp and Equi-
formerV2 are unable to maintain consistence: it appears that either 
the structures are very similar to the DFT structures, but the ener-
gies differ by >0.5 eV, such as TS6, TS11 and TS17 for MACE-mp, or 
the energies are accurate but the structures differ by >20%, such as 
TS13, TS18 and TS19. That is, even if some of the energies are cor-
rectly calculated, this is based on coincidental error cancellation 
rather than the generality of the model itself, which is also consistent 
with our previous conclusions. The performance of MACE-mp can 
be attributed to the fact that catalytic activity is often surface and 
interface dependent, which is simply not captured in bulk datasets, 
thus imposing a hard ceiling on predictive performance. It is also 
interesting to see that EquiformerV2, which is trained on a dataset 
focused on surfaces with adsorbed species, failed most test cases. 
It might also suggest that slab models are indeed not ideal training 
data, as it contains too many similar atomic arrangements, limiting 
the model’s ability to generalize.
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Fig. 6 | Reaction predictions of an extended reaction pathway for the  
Fischer–Tropsch process on Pd(100). a,c, The reaction energy profiles for 
the Fischer–Tropsch process on Pd(100) with a selected reaction pathway 
that contains multiple elementary steps starting with CO and ending with the 
formation of C6H14 (see Supplementary Table 8 for a list of the elementary steps). 

The energy profile predicted by EMLP is compared with reference to DFT. The 
transition states are labelled along the reaction coordinates, with corresponding 
structures found by the EMLP shown below. b,d, The absolute energy deviation 
(ΔE) of EMLP, MACE-mp and EquiformerV2 relative to DFT for each transition 
state. The colour code is as in Fig. 1.
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Beyond heterogeneous catalysis
To fully demonstrate the capability and generality of our EMLP, we 
extended its application beyond heterogeneous catalysis; a broader 
range of systems from organic chemistry to surface dynamics were tested. 
We were pleasantly surprised by how well the EMLP performed across all 
test cases, showing its versatility and potential across diverse domains.

We have adapted the standard test reactions given by Baker and 
Chan44, which cover a range of different reaction types and have long 
been used as a benchmark for transition-state searching. Nine out the 
25 reactions were chosen as our EMLP only covers carbon, hydrogen and 
oxygen, as shown in Fig. 7a. For simpler or smaller molecular systems 
(for example, HCCH ↔ CCH2, H2CO ↔ H2 + CO), Ea and ΔH values from 
the EMLP differ from DFT calculations by only around 0.1–0.2 eV. For 
more complex reactions, such as the cyclization of butadiene + eth-
ylene → cyclohexene, the predicted activation barrier (0.67 eV) from 
the EMLP slightly overshoots the DFT value (0.46 eV) by about 0.2 eV. 
Nevertheless, this remains a modest deviation. The ΔE predictions 
match even more closely, indicating that the EMLP maintains good 
fidelity for moderately complicated transformations. In the case of 
CH3CH3 → CH2CH2 + H2, which exhibits higher activation barriers, DFT 
gives rise to an Eₐ of 4.70 eV, while the EMLP predicts 4.23 eV, yielding an 
absolute difference of ∼0.5 eV. However, this is still on the order of a 10% 
relative error, which can be considered reasonable for high-energy tran-
sition states. For reactions sensitive to conformational shifts, such as 

trans-butadiene ↔ cis-butadiene isomerization or vinyl alcohol ↔ acet-
aldehyde, the EMLP also provides Ea and ΔH values that closely align with 
DFT. This implies that the EMLP can effectively capture nuanced changes 
in molecular geometry and their corresponding energy variations.

Predicting the free energy accurately with MLPs, especially in 
complex reaction environments such as water, presents significant 
challenges. Luo et al. showed that their system-specific MLP can be 
used for enhanced MD simulations, namely, umbrella sampling, to 
compute free-energy profiles for the reaction of CO with atomic oxygen 
on the Pt(111) surface at both solid–gas and solid–liquid interfaces25. We 
applied the EMLP to replicate and extend these findings to the Pd(111) 
surface, by performing enhanced MD simulations to obtain free-energy 
profiles for CO oxidation on Pd(111) under similar environmental condi-
tions, including challenging aqueous environments. Figure 7b shows 
the structures and the free-energy profile versus the reaction coor-
dinates for CO* + O* in the presence of water molecules, while Fig. 7c 
illustrates the CO* + O* reaction in the absence of water molecules at 
300 K from umbrella sampling simulations. The free-energy barrier 
computed by the EMLP closely matches the energy barrier calculated 
by DFT, and the overall shape of the free-energy curve is almost identi-
cal, indicating that our general-purpose EMLP was able to capture the 
relevant chemistry as well as the system-specific MLP.

We also examined H2 adsorption and dissociation dynamics on 
the Ag(100) surface. To map the potential energy surface (PES) of this 

Table 1 | Overall comparison of EMLP against MACE-mp and EquiformerV2

EMLP

Reaction system No. of reactions MAE Ea (eV) MAE ΔE (eV) MaxDev Ea (eV) MaxDev ΔE (eV) TS frequency TS similarity

CO + O (simple) 3 0.06 0.15 0.11 0.32 100.00% 98.53%

CO + O (special) 2 0.07 0.02 0.09 0.02 100.00% 99.02%

CO + O (bimetallic) 7 0.07 0.09 0.14 0.17 100.00% 99.02%

C2H4 + H (Pd) 4 0.07 0.10 0.14 0.17 100.00% 99.59%

C2H4 + H (Pd_Hcov) 4 0.11 0.08 0.26 0.15 100.00% 99.68%

C2H4 + H (PdAg3_Hcov) 4 0.15 0.13 0.29 0.34 100.00% 98.28%

C2H4 + H (PdAg_Hcov) 4 0.15 0.15 0.33 0.25 100.00% 99.60%

Fischer–Tropsch 21 0.10 0.10 0.26 0.30 100.00% 98.82%

MACE-mp

CO + O (simple) 3 0.59 1.08 0.89 1.59 0.00% 95.93%

CO + O (special) 2 0.35 0.72 0.43 0.81 50.00% 91.26%

CO + O (bimetallic) 7 0.38 0.43 0.81 0.81 85.71% 79.73%

C2H4 + H (Pd) 4 0.17 0.21 0.35 0.54 75.00% 92.67%

C2H4 + H (Pd_Hcov) 4 0.23 0.19 0.38 0.38 100.00% 97.90%

C2H4 + H (PdAg3_Hcov) 4 0.11 0.24 0.33 0.53 100.00% 95.53%

C2H4 + H (PdAg_Hcov) 4 0.20 0.30 0.37 0.40 100.00% 97.15%

Fischer–Tropsch 21 0.23 0.12 0.55 0.34 90.48% 95.42%

EquiformerV2

CO + O (simple) 3 0.07 0.40 0.10 0.89 66.67% 79.97%

CO + O (special) 2 0.12 0.46 0.12 0.62 100.00% 90.32%

CO + O (bimetallic) 7 0.22 0.61 0.75 1.43 71.43% 86.72%

C2H4 + H(Pd) 4 0.10 0.46 0.17 0.76 75.00% 86.83%

C2H4 + H (Pd_Hcov) 4 0.36 0.96 0.45 1.36 50.00% 93.77%

C2H4 + H (PdAg3_Hcov) 4 0.11 0.24 0.33 0.53 75.00% 95.10%

C2H4 + H (PdAg_Hcov) 4 0.14 0.14 0.25 0.33 100.00% 95.03%

Fischer–Tropsch 21 0.16 0.21 0.55 0.80 80.95% 87.66%

For each reaction system, we list the number of reactions evaluated; the MAE and MaxDev in predicted reaction barriers (Ea) and reaction enthalpies (ΔE); the transition state search success 
rate (one negative frequency at TS); and the average TS geometry similarity to DFT. Best performances are highlighted in bold. Hcov, surface covered by hydrogen ML.
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system and enable a direct comparison with our EMLP predictions, 
we conducted 854 single-point DFT and EMLP calculations at various 
combinations of vertical distance (z) and lateral spacing (r), while 
keeping the molecular centre and orientation fixed at the hollow site. 
Supplementary Note 11 shows structures from the dynamics simula-
tions of H2 adsorption and dissociation on Ag(100). The resulting 
two-dimensional contour plots (Fig. 7d) reveal that the EMLP-derived 
PES closely mirrors the DFT reference. The smooth progression of 
energy contours indicates that the EMLP correctly captures the inter-
play between vertical adsorption height and lateral site variation. The 
overall similarity in contour shapes, spacing and energy gradients 
demonstrates that the EMLP provides a near-DFT-level representation 
of the potential energy surface.

Moreover, we have also tested our EMLP’s performance for liquid- 
phase simulations (Supplementary Fig. 13). Figure 7e presents six radial 

distribution function (RDF) plots, O–O, O–H, H–H, C–C, C–H and C–O, 
illustrating how closely the EMLP matches the DFT reference. Overall, 
the EMLP successfully replicates the peak positions and approximate 
intensities, demonstrating its ability to capture the key structural 
features of potential energy surface of methanol. Some discrepan-
cies in the C–C or C–H RDFs may result from limited sampling of these 
interactions because the EMLP is primarily designed for heterogene-
ous catalysis. The RDF results of liquid methanol confirm that the 
EMLP-based MD simulation successfully reproduces the well-defined 
hydrogen-bonding network (indicated by the O–O and O–H peaks), 
the arrangement of methyl groups captured by the C–C peaks and the 
intermediate ordering reflected in the H–H, C–H and C–O correlations.

We also carried out further validation to demonstrate the  
EMLP’s broad applicability, including lattice constant calculations  
(Supplementary Table 11), global optimization of Ag–AgO  
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Fig. 7 | Additional benchmarks across solid, liquid and gas phases. 
a, Comparison of activation energies (Ea) and reaction enthalpies (ΔE) obtained 
from DFT and the EMLP for a range of reactions picked from standard test 
reactions given by Baker and Chan44, along with some transition-state structural 
comparisons (distances given in Å). b,c, Comparison between the free-energy 
profiles calculated using MD with umbrella sampling from DFT and the EMLP 
for the CO oxidation reaction on a Pd(111) surface in the presence of explicit 
water molecules (b) and in the absence of water molecules (c). d, Comparison of 

two-dimensional contour plots of the DFT and EMLP PESs of scattering dynamics 
of H2 on Ag(100) as a function of z and r (Å), with the molecular centre and 
orientation fixed at the hollow site. e, RDFs for liquid methanol, comparing DFT 
results with those from MD simulations using the EMLP. Each panel corresponds 
to a specific atom pair: O–O, O–H, H–H, C–C, C–H and C–O. For hydrogen-
containing pairs, only hydroxyl hydrogens (from the –OH group) are included, 
and intramolecular pairs are excluded. The colour code is as in Fig. 1.
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(Supplementary Fig. 14), relaxation of rattled surface structures  
(Supplementary Fig. 15) and high-temperature MD (Supplementary  
Fig. 16).

Discussion
The consistent performance of our EMLP, which offers low average 
and worst‐case errors, accurate transition-state finding, and high fidel-
ity across reaction systems in heterogeneous catalysis and beyond, 
demonstrates its readiness for diverse applications in chemistry. This 
capability arises primarily from a fundamental shift in how we conceive 
and approach the sampling space. Building an MLP for heterogeneous 
catalysis is no longer just a regression problem, but fundamentally a 
sampling problem. Previously, discussions of sampling space in hetero-
geneous catalysis emphasized structural space, categorized intuitively 
into chemically meaningful groups such as bulk phases, surfaces or 
transition states. However, such categorizations carry little intrinsic 
significance to machine learning models. The sampling space we per-
ceive and what the machine learning models actually see and learn 
are fundamentally different. There is a subtle and important refram-
ing: the MLP does not need to understand an entire structure; it only 
needs to understand the physics of local atomic environments. From 
the model’s perspective, structures are fragmented into local atomic 
environments, each defined by its cut-off radius. While techniques such 
as message-passing and attention can incorporate the information 
from the surroundings, the essential part still lies within the cut-off.

In this view, constructing the training set becomes an entirely dif-
ferent task, detached from conventional notions of meaningful struc-
tures. Based on this idea, we developed REICO, specifically designed 
to proficiently navigate and generate diverse and representative local 
atomic environments. Structures generated through optimization 
trajectories of imaginary chemicals encompass a rich array of bond 
formation and breaking, varied coordination patterns and intricate 
elemental interactions. This targeted diversity provides a robust foun-
dation enabling the model, like DFT, to truly describe interatomic 
interactions, thereby accurately calculating arbitrary structures and 
capturing reactive chemistry in heterogeneous catalysis and beyond. 
In addition, we have briefly tested the data convergence of our method 
by making 25,000- and 47,000-structure versions of the Ag-Pd-C-H-O 
EMLP (Supplementary Figs. 17 and 18). The results demonstrate that 
our use of ∼10,000 structures/element in the training dataset seems 
to be sufficient. In addition, the modest CPU and GPU requirements of 
our EMLP (Supplementary Fig. 19) highlight the method’s efficiency 
and broad accessibility.

Our results show that our EMLP achieves a balance of generality 
and reactivity within the targeted elemental realm with only a marginal 
accuracy trade‐off. Consequently, extending the elemental coverage of 
EMLP efficiently and improving its accuracy effectively pose important 
open challenges. We are interested in exploring whether scaling laws 
hold true when applied to datasets constructed via REICO. Incorporat-
ing more intricate chemical information, such as spin states, magnet-
ism, long-range interactions and external fields, also represents a 
critical frontier. Encouragingly, REICO’s flexibility in labelling accuracy, 
afforded by its use of small-scale structures, enables convenient rela-
belling at higher theoretical levels, enhancing our capacity to system-
atically explore and refine the broader potential of EMLPs. However, 
the highly random and disordered nature of these structures can pose 
convergence difficulties for high-level electronic-structure methods.

Overall, we argue that the generalizability of MLPs hinges on 
explicitly encoding diverse atomic interaction regimes. This princi-
ple may not only broaden MLP applicability to any system address-
able by first-principles methods but also position EMLPs as a viable, 
efficient replacement for DFT in large-scale simulations. Our EMLP can 
directly simulate chemical reactions, including the precise, consistent 
identification of transition states across various systems in heteroge-
neous catalysis, a capability absent in other MLP methods. Our EMLP 

opens new avenues for studying reaction mechanisms and kinetics 
at scale. In addition, our framework can predict properties in solid, 
liquid and gas phases without system-specific sampling, overcoming 
the traditional limitation of MLPs to narrow, predefined systems. We 
anticipate that these advancements could contribute to the training of 
next-generation foundational MLPs and significantly reduce reliance 
on DFT calculations not only in heterogeneous catalysis but also in 
general chemical research and materials science in the future.

Methods
EMLP training workflow
Initialization. Our approach starts with a random structure generator. 
To thoroughly sample across chemical space, we generate structures 
with random unit cells, random numbers of atoms and random ratios 
between target elements. We restrict the atom distance based on 
covalent radii45 to ensure no two atoms are overly proximate. For the 
Ag-Pd-C-H-O EMLP, we first generated 400 random configurations via 
REICO and relaxed them using low‐precision DFT, providing sufficient 
data at minimal cost. A multistage selection scheme was used to filter 
the initial dataset to isolate the most representative 50,000 from the 
relaxation trajectories, which were then subjected to high-precision 
single-point DFT calculations to create a training dataset for the 
proto-EMLP. NequIP11 was then used to train the proto-EMLP. This 
initialization step is optional but recommended, and one may instead 
perform the entire REICO sampling with low‐precision DFT, as dis-
cussed in the computational cost section in Supplementary Note 18.

REICO sampling. Once the proto-EMLP has been trained, it can be 
used as an engine to sample the vast local atomic environments across 
chemical space in great efficiency. For the Ag-Pd-C-H-O EMLP, we gener-
ated an additional 20,000 random structures, using the proto-EMLP for 
structure relaxation. To diversify local atomic environments within our 
dataset, we integrate structures from public databases that represent 
stable atomic arrangements, which are typically elusive in randomly 
generated datasets. We have also performed structure search methods, 
such as basin hopping, MD and rattle to sample stable and metastable 
local environments. The outcome is a comprehensive dataset com-
prising 5 million random and 1 million sensible structures, from which 
116,516 data points (96.7% from random structures and 3.3% from 
sensible structures) are selected for the final model training, after 
labelling with DFT.

Multistage structure selection. For data selection, a two-stage selec-
tion is proposed here for building our Ag-Pd-C-H-O EMLP. The first 
stage is to eliminate any extremely unstable structures by examining 
the force per atom histogram and setting a threshold (>50 eV A−1). 
These unstable structures occur because the minimization of random 
structures using proto-EMLP sometimes brings atoms too close to 
each other, resulting in unfittable forces. By doing so, we see a great 
improvement in r.m.s.e. To distinguish between structures, candi-
date structures are quantified by the Smooth Overlap of Atomic Posi-
tions (SOAP)46 descriptor and paired with cosine similarity, so that we 
can compare entire unit cells. Due to the high level of randomness in 
our dataset, we can set the similarity to 0.005 to select the most rep-
resentative structures, which is not possible in a MD-created stable 
system-dependent dataset. We were able in this way to select 116,000 
data points from a database of 6 million structures. In addition, other 
potential selection methods, including descriptors such as ACSF47 and 
SNAP48, and algorithms such as CUR49, can also be used here. Therefore, 
we believe it is possible to add multiple stages of selection to reduce 
the size of the dataset and improve the model performance.

Random structure generation
The generation of random structures involved the use of random num-
bers generated by the NumPy50 module in Python. Throughout the 
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process of searching for the different atomic environments, parameters 
such as lattice constants, types and quantities of elements, and atomic 
positions, were adjustable through the generation of random numbers. 
Because the primary objective of this study is to train a global potential, 
we opted for random generation of lattice constants, element quanti-
ties and atomic positions.

DFT calculation
In this study, all DFT computations were conducted using the Vienna 
Ab initio Simulation Package (VASP)51, employing the Perdew–Burke–
Ernzerhof function within the framework of the generalized gradient 
approximation 52. The core–valence electron interaction was described 
using the projector augmented wave method53. We used a Monkhorst–
Pack k-point grid with a density of 25 k-points per reciprocal Å, sam-
pled at multiples of the reciprocal lattice vectors (1/25 Å−1). For the 
single-point calculation, the energy cut-off is set to 450 eV. The con-
vergence criterion for atomic forces was set to 0.05 eV Å−1 to ensure 
sufficient convergence during the optimization of atomic positions, 
while the energy criterion for convergence was set to 5 × 10−6 eV. Addi-
tionally, the DFT-D3 method was used to further correct intermolecular 
forces54. For low-precision DFT relaxation, we set the energy cut-off to 
350 eV, and k-point sampling utilizes only the gamma point to balance 
the accuracy and speed of the computation. All DFT calculations are 
non-spin-polarized because our primary focus is PdAg-related cata-
lysts, which do not require spin/magnetism considerations as shown 
in Supplementary Note 18.

Machine learning model
This study used the NequIP software package11 for fitting our EMLP and 
MLP. NequIP utilizes the E(3)-equivariant graph neural network model, 
demonstrating excellent fitting and generalization capabilities in MD 
simulations. The final dataset for the Ag-Pd-C-H-O five-element EMLP 
used in this study consists of 116,000 configurations calculated using 
highly accurate DFT.

For the development of the MD-MLP, candidate structures were 
selectively retrieved from the MPF2021.2.8 dataset36, incorporating 
configurations that contain all or a subset of the elements silver, pal-
ladium, carbon, hydrogen and oxygen. Our initial selection yielded 
more than 300 structures. Noting that MPF2021.2.8 includes pairs of 
structures that are identical except for slight differences in orientation, 
we reduced redundancy by halving the dataset to 101 unique structures. 
Each of these structures was then subjected to a high-temperature MD 
simulation using LAMMPS55, executed for 20,000 steps with a time step 
of 0.5 fs. To ensure comprehensive sampling of the MD trajectories, 
one structure was saved every 20 steps, resulting in a total of 104,104 
structures. Half of the dataset were trained using the NequIP software 
package12 with the same hyperparameters as the Ag-Pd-C-H-O EMLP to 
obtain the MD-MLP

Data diversity and coverage
The Steinhart order parameter (OP)56 and energy of each atom in a 
REICO-generated dataset (112,732) and a MD-generated dataset 
(104,104) are calculated and plotted in Fig. 2a to characterize and 
compare the distribution of local atomic arrangements and environ-
ments. The Steinhart OP is calculated by equations (1) and (2):

OPl = ( 4π
2l + 1

l
∑

m=−l
|qlm|

2)
1/2

(1)

where

qlm = 1
N

N
∑
j=1

Ylm (rij) (2)

in which i is the central atom, rij is the vector connecting atom i and 
its neighbour j, N is the number of neighbours of atom i and Ylm is the 
spherical harmonic function of degree l and order m. Here, the Python 
package pyscal57 is used to identify the neighbours of an atom and 
calculate the Steinhart OP, where the cut-off radius is 5 Å and l is 4. The 
energy of each atom is evaluated by our Ag-Pd-C-H-O EMLP, and the 
plotting reveals the influence of the surrounding environment on the 
energy of the central atom.

Generality test
We tested the generality of our EMLP by comparing the forces predicted 
by DFT, EMLP and other MLPs by a rigid scan of the dimer systems. All 
possible dimer combinations of silver, palladium, carbon, hydrogen 
and oxygen are calculated by both DFT and MLP models and an atom 
distance range from 0.6 to 2.0 times the equilibrium bond length is 
scanned. Here, the sum of the covalent radii of two atoms is consid-
ered to be the equilibrium bond length of the dimer, and the covalent 
radii dataset established in the Atomic Simulation Environment (ASE) 
package58 is used in the estimation45. A pretrained EquiformerV235 
checkpoint with 153 million parameters and a validation force MAE 
of 15.0 meV Å−1, which was trained on OC20 S2EF-All+MD splits, is also 
included in the comparison as another benchmark model.

Free cluster MD
The Ag28O22 and Pd34O56 cluster models were placed in a 30 Å ×  
30 Å × 30 Å lattice. Initially, structural optimization was performed 
using DFT until the maximum atomic force was reduced to <0.05 eV Å−1. 
Subsequently, MD simulations were conducted with a time step of 1 fs 
at a temperature of 700 K. DFT calculations were performed in VASP 
using the Nosé–Hoover thermostat under the NVT ensemble for a 
total simulation time of 15 ps. All MLP calculations (EMLP, M3GNet, 
EquiformerV2 and MACE-mp) were carried out using ASE, utilizing the 
Langevin thermostat under the NVT ensemble, with a total simulation 
time of 500 ps.

Surface models
This study utilized multiple surface models to test the reliability and 
generality of the neural network potentials. The details of the surface 
models are as follows.

For calculating the Ag(111)/PTCDA interface, we constructed a 
four-layer Ag(100) surface, with two layers of silver atoms fixed to 
simulate the bulk atomic environment, and used a (6 × 6√3) supercell 
to ensure that two PTCDA molecules could be adsorbed on the 
surface.

For calculating CO oxidation, this work used a total of five different 
surfaces. For Pd(100) and Pd(111), four-layer (3 × 3) unicell surfaces were 
constructed, with the lower two layers of palladium atoms fixed. For 
Pd(110), a six-layer (3 × 3) unicell surface was used, with the lower two 
layers of palladium atoms also fixed. Finally, for the model with palladium 
atoms on the Ag(111) surface, a four-layer (4 × 2√3) supercell was con-
structed for the Ag(111) surface. The palladium atom models included a 
Pd4 cluster and a palladium single atom, with the lower two layers of silver 
atoms fixed in all models to simulate the bulk environment.

For calculating the reaction pathway for ethylene oxidation, a 
four-layer (4 × 4) Ag(111) surface was used, and the lower two layers of 
silver atoms were fixed to simulate the bulk environment.

For calculating the reaction pathway for acetylene hydrogenation, 
the Pd(111) surface used is consistent with that used in the CO oxidation 
calculations. The bulk structure of PdAg3 used was derived from the sta-
ble structure identified in the work of Li et al.43, and the hydrogen-covered 
surface structure used is also consistent with their findings.

In the study of the palladium–water interface, we constructed a 
four-layer Pd(111) surface using a (3 × 3) unicell and placed 30 water 
molecules on the surface to ensure the reasonableness of the solu-
tion simulation. In the umbrella sampling, the carbon atom in carbon 

http://www.nature.com/natcatal


Nature Catalysis | Volume 8 | September 2025 | 891–904 902

Article https://doi.org/10.1038/s41929-025-01398-3

monoxide and the oxygen atom on the surface were used as collective 
variables. Each window had a width of approximately 0.05 Å, and a total 
of 39 windows were created to reconstruct the free-energy profile of 
carbon monoxide oxidation.

Transition-state search
This study used constrained transition-state searches59 and the climb-
ing image nudged elastic band60 method to locate transition states. The 
climbing image nudged elastic band method was implemented using 
ASE58. All transition states converged to forces <0.05 eV Å−1. DFT is used 
to check a single imaginary frequency to verify the transition state for 
all model searched transition states.

Transition-state structure similarity analysis
In this study, the SOAP46 descriptor is used to analyse the chemi-
cal environments of carbon, hydrogen and oxygen atoms within 
the transition-state structures. The features extracted from these 
environments are averaged to construct a descriptor for the entire 
transition-state structure. A cut-off radius of 4.5 Å is chosen to ensure 
that atoms involved in surface relaxation are adequately captured while 
minimizing the influence of bulk atoms. For the calculation of struc-
tural similarity, this strategy is applied to generate the transition-state 
descriptors and the cosine similarity between these descriptors is used 
to quantify the structural similarity.

Umbrella sampling
In the umbrella sampling, the carbon atom in carbon monoxide and the 
oxygen atom on the surface were used as collective variables (CV). The 
harmonic potential is chosen to be the bias potential that constrains 
the CV, shown in equation (3):

V = 1
2 κ × (ξ − ξ0)

2 (3)

The parameters of the potential are the force constant κ  and the 
minimum or the potential ξ0. Each window had a width of approxi-
mately 0.05 Å, and a total of 39 windows were created to reconstruct 
the free-energy profile of carbon monoxide oxidation using a spring 
force of 15 eV Å−1. All simulation processes are implemented using 
LAMMPS and VASP.

Radial distribution functions
In this study, we selected trajectories from the methanol MD simula-
tions over a time window of 5–10 ps, extracting one structure every 
5 fs for the calculation of the RDF. All RDF calculations were performed 
using the VMD package, and the final RDF was obtained by averaging 
all individual RDF results.

Melting point MD
In this study, the melting points were simulated using the single-phase 
method based on the NPT ensemble. Silver and palladium models with 
a 5 × 5 × 5 supercell, each containing 500 atoms, were used. For the 
calculation of the melting point of silver, a heating rate of 6.3 × 1012 K s−1 
was applied, with temperatures ranging from 100 K to 2,000 K. For 
the palladium melting point calculation, the heating rate was set to 
8 × 1012 K s−1, with temperatures ranging from 100 K to 2,500 K.

Data availability
The Ag-Pd-C-H-O model and its training dataset are publicly available 
under the Ag-Pd-C-H-O EMLP from GitHub via https://github.com/
HuGroup-shanghaiTech/REICO. Details are provided in the correspond-
ing section in Methods. All the electronic structure calculations are 
available from Fisgshare via https://figshare.com/articles/dataset/
electronic_structure_calculations/29484686 (ref. 61). Source data are 
provided with this paper.

Code availability
The REICO code is available from GitHub via https://github.com/
HuGroup-shanghaiTech/REICO.
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