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ABSTRACT: The short exciton diffusion length (LD) associated with most classical
organic photocatalysts (5−10 nm) imposes severe limits on photocatalytic hydrogen
evolution efficiency. Here, a photovoltaic molecule (F1) without electron-deficient
units at the central building block was designed and synthesized to improve the
photoluminescence quantum yield (PLQY). With the enhanced PLQY of 9.3% and a
large integral spectral overlap of 3.32 × 1016 nm4 M−1 cm−1, the average LD of F1 film
increases to 20 nm, nearly twice the length of the control photovoltaic molecule (Y6).
Then, the single-component organic nanoparticles (SC-NPs) based on F1 show an
optimized average hydrogen evolution rate (HER) of 152.60 mmol h−1 g−1 under AM
1.5G sunlight (100 mW cm−2) illumination for 10 h, which is among the best results for
photocatalytic hydrogen evolution.

■ INTRODUCTION
Hydrogen produced through the solar-light-driven splitting of
water has been considered the most potential candidate for
clean and high-energy-density energy carriers.1−4 Since the
photocatalytic activity of carbon nitride in photocatalytic
hydrogen evolution was reported in 2009,5 a lot of attention
has been paid to organic photocatalysts due to their potential
advantages in terms of the tunable chemical structure and
optical and electronic properties,6−8 especially broader
absorption toward visible and near-infrared (NIR) light,
relative to their traditional inorganic counterparts like TiO2

9

and SrTiO3.10 Organic semiconductors currently used as
photocatalysts for hydrogen evolution mainly included
covalent organic frameworks (COFs),11,12 polymeric carbon
nitride,13,14 and photovoltaic polymer/organic nanoparticles
(NPs).15−17 Among the reported organic photocatalysts,
photovoltaic polymer/organic NPs are easily solution-
processed, have the most diversified strategies to optimize
chemical structure/property, and have achieved the best
hydrogen evolution rate (HER) so far.18

Excitons governed the optoelectronic functionalities of
organic semiconductors because the high exciton binding
energies (usually >300 meV)19,20 prevented the spontaneous
dissociation of exciton within organic semiconductors. Thus,
exciton diffusion has important implications in organic
photocatalytic hydrogen evolution, similar to other optoelec-
tronic applications, such as solar cell devices.21 Longer exciton
diffusion distance ensures that more excitons within semi-
conductors can reach the interface and dissociate to charge
carriers before radiative or nonradiative recombination.22,23

However, organic semiconductors suffered from very short
exciton diffusion length (LD, 5−10 nm),24 which limited the
improvement of their energy conversion efficiency in light-
harvesting applications. In addition to single-component
organic NPs (SC-NPs) with a considerable simplification of
the optimization process and NP fabrication,25 polymer/
organic bulk heterojunction nanoparticles (BHJ-NPs), in
which electron donors and electron acceptors were blended,
have been proved to provide more interfaces for exciton
dissociation and promote the improvement of photocatalytic
hydrogen efficiency,17,26−30 but still required that exciton
efficiently diffused from the pure donor or acceptor domain to
donor/acceptor interface, usually the distances of tens
nanometers depend on the domain sizes of pure donor/
acceptor. Thus, it is still necessary to develop efficient organic
photocatalysts with long LD to boost the improvement in the
photocatalytic hydrogen evolution efficiency of photovoltaic
polymer/organic NPs, especially for SC-NPs.

Here, we design and synthesize a photovoltaic organic
photocatalyst, named F1 (Figure 1), that does not employ the
central electron-withdrawing units widely existing in high-
performance electron acceptors, such as “thiadiazole” of Y6
(Figure 1).31 Relative to Y6, F1 exhibits obviously higher
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photoluminescence quantum yield (PLQY) of 9.3%, and a
larger integral spectral overlap (J) of 3.32 × 1016 nm4 M−1

cm−1, leading to a longer calculated LD of 20 nm. The average
hydrogen evolution rate (HER) for the SC-NPs based on F1 is
more than twice that of Y6 under the same test conditions
(AM 1.5G, 100 mW cm−2 illumination for 10 h). The
optimized average HER of F1 NPs reaches 152.60 mmol h−1

g−1. To the best of our knowledge, this value of 152.60 mmol
h−1 g−1 is one of the best results for the photocatalytic
hydrogen evolution from organic SC-NP photocatalysts,18,32

even higher than those reported for some BHJ-NPs17,26−28 and
1−3 orders higher than those reported for some inorganic
catalysts.9,33

■ RESULTS AND DISCUSSION
Molecular Design and Synthesis. In an organic semi-

conductor, exciton diffusion occurs through a series of
successive Förster resonant energy transfers (FRETs) between
chromophores.34 FRET is an electrostatic dipole−dipole
interaction between chromophores that needs spectral overlap
between absorption and emission of chromophores, a short
distance between the chromophores, as well as an appropriate
orientation of their transition dipoles. The rate of Förster
energy transfer (kF) between two molecules can be quantified
as follows35
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where R is assumed as the average intermolecular distances, τ0
is the intrinsic exciton lifetime that is not limited by diffusion-
limited quenching at defects,36 and R0 is the Förster radius37
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where k2 is the dipole−dipole orientation factor (for rigid and
randomly oriented dipoles, k2 = 0.47638), φPL is the PLQY, J is
the spectral overlap integral between the emission (normal-
ized) and absorption (extinction coefficient of the film) of
chromophores, NA is the Avogadro number, and n is the
refractive index.34 Clearly, improving the PLQY benefits
enhance the energy transfer within the organic semiconductor,
thereby increasing the LD.34,39 Most of the reported high-
performance photovoltaic molecules, such as Y6 and its
derivatives have an electron-deficient unit at the central
building block, such as the “thiadiazole”,31 “triazole”,40 and
“pyrazine”41 units. However, these central electron-deficient
groups usually attenuated or quenched the fluorescence of the
fluorophore because they could increase the reorganization
energy,42 leading to the increased nonradiative recombination
rate.43,44 Thus, to improve the PLQY and LD, we designed the
F1, which employed a typical acceptor−donor−acceptor (A−
D−A) curved molecular structure based on a nitrogen
heterocyclic electron-donating core (Figure 1), without the
central electron-deficient groups like Y6 and its derivatives.
Coincidentally, while our manuscript was under review, Yi et
al. theoretically simulated the electronic structures of Y6 and
F145 and confirmed that F1 exhibited smaller reorganization
energy for the S0 ↔ S1 state than Y6 (106 meV for F1; 116
meV for Y6). The smaller reorganization energy is beneficial to
the enhanced PLQY,43,44 decreased Stokes shift,39 and faster
exciton diffusion.45 This theoretical simulation results support
the fact that our design is reasonable for improving the PLQY
and LD by removing the central electron-deficient group.

Figure 1. Diagram of motivation. Relative to Y6 with a central electron-deficient unit (thiadiazole), F1 without thiadiazole exhibits higher PLQY
and longer LD. Longer LD ensures that more excitons within semiconductors can reach the interface and dissociate to charge carriers before
recombination. The blue solid spheres represent electrons and the orange solid spheres represent holes. Solid blue and orange spheres surrounded
by dashed lines represent excitons. The yellow lightning shapes represent exciton recombination. The thin green arrows represent diffusion. The
thick green arrows represent the FRET.
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The core synthesis steps of F1 are different from those of
traditional Y6 and its derivatives. As shown in Scheme 1, for Y6
and its derivatives, pyrrole-bridging rings (4) are obtained by
Cadogan ring-closure reaction between the compound (3) and
triethyl phosphate.46 However, the primary product of
nitrification of 1,4-dibromobenzene (5) is mono-nitrated 1,4-
bibromo-2-nitrobenzene (6′) rather than 1,4-dibromo-2,3-
dinitrobenzene (6).47 Moreover, in another potential option,

the oxidation of 3,6-dibromobenzene-1,2-diamine (8) to nitro
compounds (6) requires the participation of the highly toxic
gas (F2).48 Therefore, pyrrole-bridging rings (d) cannot be
readily obtained according to the traditional methods
mentioned above because the corresponding nitro compound
(6) is difficult to be synthesized. Inspired by the synthesis of
N,S-based bisacene (bisthienodiindole) in 75% yield reported
by Miura et al.,49 we distinctively synthesize pyrrole-bridging

Scheme 1. Typical Synthetic Routes of the Central Fused Rings for Y6 and Its Derivatives. The Possible Methods to Synthesize
1,4-Dibromo-2,3-dinitrobenzene, One Critical Intermediate for Constructing F1 Assuming to Adopt the Similar Route of Y6.
The Method We Used Here to Synthesize the Central Fused Ring for F1a

aThe purple rings represent thieno[3,2-b]thiophene and its derivatives, and the yellow ellipses represent sulfur atom, selenium atom, ethylene, and
other derivatives. DMAP is the abbreviation of 4-dimethylaminopyridine.

Figure 2. (a) Absorption coefficient and normalized PL of F1 film and Y6 film. (b) Time-resolved photoluminescence of F1 film, F1 crystal, Y6
film, and Y6 crystal. (c−e) Unit cells of F1 viewed from different directions. The green, red, and orange arrows represent the lengths of a-, b-, and c-
axes, respectively. The blue arrows represent the distance between adjacent molecules on the corresponding axis.
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rings (d) from compound (c) through a Cu-catalyzed
intramolecular C−H/N−H amination strategy without the
use of highly toxic reagents, which provides another synthetic
method for pyrrole-bridging rings. The compound (c) is
obtained using compound (a) as the starting material, which
then undergoes a reduction reaction and condensation reaction
(Scheme 1). The rest of the synthesis steps for F1 are similar
to those of the reactions used in the synthesis of Y6 and its
derivatives, such as alkylation reaction, nucleophilic reaction,
and Knoevenagel condensation reaction (Scheme S1 and
Spectral Chart of NMR).
Light Absorption. The strong solar-light-harvesting ability

of photocatalyst is one of the preconditions for the high
performance solar hydrogen evolution. The maximum
extinction coefficient of the F1 chloroform solution (10−6

M) is 2.3 × 105 M−1 cm−1, which is higher than that of Y6
(1.71 × 105 M−1 cm−1).31 The absorption onset of F1 film
extends to 901 nm compared to its solution (Figure S1).
Moreover, F1 film exhibits a higher maximum extinction
coefficient (1.5 × 105 cm−1 at 805 nm, Figure 2a) than that of
Y6 film (9.7 × 104 cm−1 at 820 nm), and the enhanced
absorption of F1 is beneficial to the increased photocatalytic
performance, especially in a relatively low concentration of
catalyst in which the incident light is not totally absorbed.
Morphology. In addition to the molecular electronic

structure, molecular ordering and crystalline properties are also
important to exciton diffusion. The grazing incidence wide-
angle X-ray scattering (GIWAXS) measurement is used to
study the morphological structures of the F1 film (Figure S2).
The F1 film presents an out-of-plane (OOP) π−π peak at q =
1.74 Å−1 (d = 3.61 Å) with the crystalline coherence length
(CCL) of 24.8 Å. Furthermore, F1 shows an in-plane (IP)
lamellar peak (q = 0.41 Å−1, d = 15.32 Å, CCL = 70.7 Å),
indicating that F1 shows regular molecular ordering. These
CCL values of F1 in both OOP and IP directions are larger
than those of the corresponding peaks of Y6 (d = 15.70 Å,
CCL = 37.7 Å, IP; d = 3.63 Å, CCL = 18.2 Å, OOP).50

Compared to Y6, the enhanced CCLs of F1 imply that the F1
film has lesser grain boundaries, which decrease the non-
radiative recombination and benefit the improved PLQY and
contribute to extended LD.51

Exciton Diffusion. Photocatalytic reactions occurring at
organic photocatalysts are initiated by charge carriers (electron
and hole) generation following the photoinduced excitons
diffuse to the surfaces of catalysts. Only those excitons
generated at a distance shorter than LD are effective in
dissociating to free charge carriers. The R0 value, one critical
parameter for quantifying LD, should first be calculated
according to eq 2. The PLQY of the F1 film (9.3%) we
measured here is higher than that of the Y6 film (5.6%),
supporting the fact that PLQY can be improved by removing
the central electron-withdrawing units in Y6 and its derivatives.
As shown in Figure 2a, compared with the Y6 film (stokes
shift: 1136 cm−1; J: 2.19 × 1016 nm4 M−1 cm−1), the F1 film
showed a higher extinction coefficient discussed above and
smaller stokes shift (928 cm−1), leading to a larger J (3.32 ×
1016 nm4 M−1 cm−1). Then, n is obtained by taking the average

refractive index of the medium in the wavelength range at
which spectral overlap is significant.52 Although the n of F1
(3.21) is slightly larger than that of Y6 (3.07, Figure S3), R0 of
F1 (3.3 nm) is still obviously larger than that of Y6 (2.9 nm)
due to the higher PLQY and larger J.

Furthermore, LD was calculated by the FRET theory, which
is a relatively easy method to estimate the diffusion coefficient
since no fitting or modeling software is needed.52,53 Although
FRET theory is an indirect method, the LD obtained from
FRET theory is in good agreement with other directly
measured LD values.52,54 The exciton diffusion coefficient
(D) can be estimated using Smoluchowski−Einstein theory of
random walks and connects to the rate of kF expressed as55

D AR k A
R

R
2

F
0
6

0
4= =

(3)

where A is a constant. We use the photoluminescence lifetime
of a single crystal to calculate the τ0 by assuming that there are
no exciton quenching defects in the single crystal. As shown in
Figure 2b, the τ0 of F1 and Y6 are 1.11 and 1.00 ns,
respectively. Here, we evaluate the approximation of the R
from the closest intermolecular distance in a single crystal
using the same method reported by Nguyen et al.52 The
minimum value of R is obtained from the shortest
intermolecular distances in the single crystal. Therefore, the
single-crystal structure of F1 is investigated by single-crystal X-
ray diffraction (XRD). The F1 single crystal has a monoclinic
crystal system and the C2/c space group. The details can be
viewed from the crystallographic information file (CIF,
Supporting Information, Table S1). As shown in Figure 2c−
e, the intermolecular distances of the a-, b-, and c-axes are 1.92,
1.79, and 0.42 nm, respectively. Thus, the minimum value of R
for F1 is 0.42 nm. The maximum value of R is obtained by
assuming that molecules are positioned in cubic lattice52 using
eq 456

R
N

1

M A
W

3

=
(4)

where ρ is the theoretical density obtained from XRD data and
MW is the molecular weight. The maximum value of R for F1 is
1.26 nm, with ρ of 1.15 g cm−3 and MW of 1393 g mol−1. The
maximum (1.29 nm) and minimum (0.48 nm) values of R for
Y657 were calculated using the same method as F1. The D is
calculated following eq 3 with R0, τ0, and R. The calculated
average D of F1 is 3.8 × 10−2 cm2 s−1 according to the average
R value (0.84 nm). In contrast, the calculated average D of Y6
is 1.6 × 10−2 cm2 s−1 compared with 0.89 nm of the average R.

Then, LD is equal to58

L D A
R
RD f

f

0

0
3

2= =
(5)

where τf is the photoluminescence lifetime in a sample. The
values of τf of the F1 and Y6 thin films are 1.06 ns and 0.97 ns,
respectively (Figure 2b). According to eq 5, the calculated
average LD of the F1 thin film is 20 nm, which is nearly twice

Table 1. Parameters for Calculating LD Using the FRET Theory

organic materials PLQY (%) J (nm4 M−1 cm−1) n R0 (nm) τ0 (ns) ave. R (nm) ave. D (cm2 s−1) τf (ns) LD (nm)

F1 9.3 3.32 × 1016 3.21 3.3 1.11 0.84 3.8 × 10−2 1.06 20
Y6 5.6 2.19 × 1016 3.07 2.9 1.00 0.89 1.6 × 10−2 0.97 12
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that of the Y6 film (12 nm) calculated by the same method. All
of the detailed parameters of the LD calculation are listed in
Table 1. It should be noted here there are usually some
differences in the results obtained by measuring LD with
different methods for the same material in the literature.23 The
LD (12 nm) we obtained for the Y6 thin film here is very close
to the LD calculated by the exciton−exciton annihilation
method reported by Wei et al. (10.6 nm).59

Energy Level. Apart from the strong photon-capturing
capability and long LD, the character of the energy levels of
photocatalyst with respect to the reduction and oxidation levels
are also critical for solar HER.60 Ultraviolet photoelectron
spectroscopy (UPS) is used to calculate the highest occupied
molecular orbital (HOMO) and low-energy inverse photo-
emission spectroscopy (LEIPS) is used to calculate the lowest
unoccupied molecular orbital (LUMO) of F126 (Figure 3a).
The LUMO energy levels of F1 (−3.84 eV) are higher than
those of Y6 (−4.03 eV),61 indicating that F1 possesses
sufficient thermodynamic driving force to reduce proton
(−4.32 eV)26 and more efficient charge separation relative to

Y6.60 Moreover, the HOMO energy level of F1 (−5.52 eV) is
lower than the oxidation potential (−4.72 eV)26 of the ascorbic
acid, which means that the hole of F1 can be efficiently
extracted by ascorbic acid.
Hydrogen Evolution. F1 is expected to have potential in

photocatalytic hydrogen evolution on account of the strong
light absorption capability, long LD, and appropriate energy
levels. Then, we optimize the hydrogen evolution performance
of single-component F1 NPs by varying sacrificial agents and
controlling weight ratios of sodium 2-(3-thienyl) ethyl-
oxybutylsulfonate (TEBS) and Pt-loading ratios (Figures
S4−S6), where TEBS and Pt were stabilizing surfactant17

and cocatalyst. Unlike ascorbic acid, there was no detectable
hydrogen production when using weakly basic triethanolamine
and neutral ethylene glycol as sacrificial agents (Figure S4),
which did not provide enough driving force for proton
reduction here.62 The average HER of F1 NPs (6.67 μg mL−1)
is 88.69 mmol h−1 g−1 (with a maximum HER of 115.93 mmol
h−1 g−1) at an optimized 0.4 wt % TEBS and 33 wt % Pt ratio
loadings for 10 h under AM 1.5G (100 mW cm−2), while an

Figure 3. (a) UPS and LEIPS spectra of F1, with respect to the Fermi energy level (EF) at 0 eV (work function (WF) values are labeled). (b) H2
evolution vs time of the optimized F1 NPs (0.4 wt % TEBS and 33 wt % Pt loading) at the concentration of 15.63 μg mL−1, under AM 1.5G (100
mW cm−2). (c) Cryo-TEM image of F1 NPs after the deposition of the Pt cocatalyst. The black dots represent Pt. (d) Recycling experiments of
hydrogen evolution of F1 NPs (6.67 μg mL−1) under AM 1.5G (100 mW cm−2). For recycling experiments, the equivalent amount of ascorbic acid
is added after the end of every cycle, according to the consumption of ascorbic acid. (e) EQE and absorption spectrum of F1 NP photocatalysts. (f)
Electrochemical impedance spectroscopy Nyquist plot of F1 NPs and Y6 NPs. The inset is the equivalent circuit. Rs1 is the series resistance, Ri is
the internal resistance, Rs2 is the surface resistance, Cg is the geometry capacitance, and Cs is the surface capacitance.
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average HER of 123.15 mmol h−1 g−1 under 400−800 nm
visible-light illumination (100 mW cm−2; Figure S7). In
addition, we further measure the hydrogen evolution of F1
NPs at different concentrations with the optimized 0.4 wt %
TEBS and 33 wt % Pt ratio loadings (Figure S8 and Table S2)
under AM 1.5G (100 mW cm−2). F1 NPs exhibit the highest
hydrogen production of 216.6 μmol for 10 h at the
concentration of 33.74 μg mL−1 and the highest average
HER of 152.60 mmol h−1 g−1 at the concentration of 15.63 μg
mL−1 (Figure 3b). These average HER values are among the
best results for the photocatalytic hydrogen evolution from
organic photocatalyst SC-NPs,18,32 even higher than those
reported for some BHJ-NPs,17,26−28 and 1−3 orders better
than those reported for some inorganic catalysts.9,33 The
dynamic light scattering (DLS) results show the size
distribution of F1 NPs with different TEBS weight ratios
(0.3−0.75 wt %; Figure S9), which reveals that the average
nanoparticle diameter is around 44−71 nm, which is
dependent on the TEBS content. The radius of these NPs
(about 22−35 nm) is close to the LD of F1, which ensures that
most of the excitons can diffuse to the interface to dissociate to
charge carriers. The average F1 NP diameter is 46.4 nm with
an optimized TEBS weight ratio of 0.4 wt %. Then, Cryo-
transmission electron microscopy (Cryo-TEM) is used to
investigate the morphologies of F1 NPs with optimized TEBS
weight ratios and Pt ratio loadings (Figures 3c and S10), which
shows that the average diameter of F1 NPs is 44.2 ± 14.8 nm.
From the typical Cryo-TEM photograph of F1 NP (Figure 3c),
Pt can be clearly observed to be dispersed on the surface of F1
NPs with a size of several nanometers, which facilitates the
transfer of electrons from F1 NPs to H+.63 Then, the
photocatalytic cycling stability of F1 NPs is investigated
(Figure 3d). The F1 NPs exhibit good stability after three
cycles, and the HER retains 77 and 68% of the value of the first
cycle at the end of the fourth cycle and fifth cycle, respectively.
As shown in Figure S11, the NPs aggregated with the increase
in the number of test cycles, which contributed to the decrease
in catalytic activity. Moreover, we used Cryo-TEM and matrix-
assisted laser desorption/ionization-time of flight mass
spectrometry (MALDI-TOF MS) to check the variations in
the morphology and molecular structure of the F1 NPs after
the fifth cycle of the stability test. As shown in Figure S12, F1
NPs have an average diameter of 68.3 ± 27.2 nm, which is
significantly larger than that of the initial F1 NPs. The obvious
aggregation phenomenon of F1 NPs is consistent with that
observed by DLS. As shown in Figure S13, MALDI-TOF MS
results show that there are a few weak fragment peaks with a
lower molecular weight than that (m/z: 1393.30) of F1,
indicating a slight decomposition of the photocatalyst after the
stability test. The initial zeta-potential of F1 NPs with 0.4 wt %
TEBS, which showed an optimized HER, is −16.5 mV,
indicating that these NPs have negative charges on their
surfaces with fair stability of the suspension,64 and there is
some room to improve the stability by increasing the absolute
value of the zeta-potential of NPs.

As a comparison, we first evaluate the catalytic performance
of Y6 SC-NPs under the same condition with optimized TEBS
and Pt ratios for F1 (0.4 wt % TEBS and 33 wt % Pt ratio
loadings). As shown in Figure S7, the average HER of Y6 (6.67
μg mL−1) is 39.18 mmol h−1 g−1, which is less than half that of
F1 NPs (88.69 mmol h−1 g−1) under AM 1.5G irradiation at
100 mW cm−2 for 10 h. Moreover, with a decreased Pt ratio
loading (30 wt %), the HER of Y6 NPs drops to 24.14 mmol

h−1 g−1 (Figure S14a), while the HER of F1 is still as high as
80.27 mmol h−1 g−1 (Figure S6). When the concentration is
increased from 6.67 to 33.74 μg mL−1, in which the absorption
of catalyst is almost saturated and should not limit the
photocatalytic performance, Y6 NPs exhibit a hydrogen
production of 103.7 μmol for 10 h (Figure S14b), which is
also lower than that of F1 NPs (216.6 μmol) at the same
concentration. The DLS results show that the average size of
Y6 NPs (80.4 nm, Figure S15) is larger than that of F1 NPs
(46.4 nm) fabricated under the same conditions. To minimize
the influence of the NP size on the catalytic performance, we
tune the size of NPs by changing the weight ratios of TEBS
(0.4−2 wt %). When the weight ratio of TEBS is increased to 2
wt.%, the average size of Y6 NPs decreases to 55.1 nm (Figure
S15), comparable to the size of optimized F1 NPs (Figure S9).
However, these Y6 NPs only show an average HER of 22.94
mmol h−1 g−1 (Figure S16) under AM 1.5G (100 mW cm−2)
for 10 h. These results indicate that F1 NPs show better
photocatalytic hydrogen evolution performance than Y6 NPs,
which can mainly be attributed to the extended exciton
diffusion of F1.

Furthermore, the external quantum efficiency (EQE) values
of F1 SC-NPs are greater than or equal to 3% and can reach
6.9% at a wavelength of 600 nm (Figure 3e). The EQE of F1
SC-NPs, measured in absorption saturation, is much higher
than that of Y6 SC-NPs (<2.5%; Figure S17), which should be
mainly attributed to a longer LD of F1. To better understand
the photocatalytic process of H2 generation, the efficiency of
charge extraction was studied by electrochemical impedance
spectroscopy. Compared with Y6 NPs, the F1 NPs display a
smaller semicircle (Figure 3f), indicating that the efficiency of
charge separation and transfer of F1 is higher than that of Y6
NPs,65,66 leading to a higher HER of F1.

■ CONCLUSIONS
In summary, we developed an organic photovoltaic photo-
catalyst (F1) with a high PLQY (9.3%) by employing an A−
D−A curved molecular structure through a new synthetic
method for pyrrole-bridging rings. Combined with the large J,
F1 exhibited extended average LD of 20 nm, which was nearly
twice as long as that of Y6. The SC-NPs based on F1 showed
an optimized average HER of 152.60 mmol h−1 g−1 under one
sun (AM 1.5G, 100 mW cm−2) illumination for 10 h. To the
best of our knowledge, this average HER was among the best
results for photocatalytic hydrogen evolution from organic
photocatalysts and was much better than those of inorganic
catalysts. The work revealed that optimizing electronic
properties by regulating the molecular structure was promising
for developing photovoltaic materials with a long LD and
promoting improvements in photocatalytic hydrogen evolution
from organic semiconductors. This strategy should be
extended to some other related fields, like organic solar cells
and photodetectors.
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