

低标度量子化学程序(LSQC)

用户手册

LSQC 工作组 南京大学理论与计算化学研究所

2025-1-19

低标度量子化学程序(Low Scaling Quantum Chemistry, No. 2006SR09617,以下简写为 LSQC)是用于大体系线性标度或低标度 电子结构计算的一个程序集,由南京大学黎书华教授、李伟教授课题 组开发。LSQC 的初版是 2006 年 4 月 20 日发布的 1.0 版,当前版本 为 2025 年 1 月 19 日发布的 3.0 版。LSQC 支持串行和 Intel MPI 并行 计算,适用于大多数 Linux 系统。关于 LSQC 程序的最新消息请浏览 <u>http://itcc.nju.edu.cn/lsqc</u> 或扫描如下二维码:

©2025 Nanjing University. All Rights Reserved.

目 录

第一章	程序介绍	5
1.1	关于程序	5
1	1.1.1 GEBF 模块	5
]	1.1.2 CIM 模块	7
1	1.1.3 PBC-GEBF 模块	8
1	1.1.4 PBC-CIM 模块	9
1.2	必备技能	10
1.3	手册的组织结构	10
1.4	标识约定	11
第二章	程序安装	12
第三章 携	是交 LSQC 任务	14
3.1	输入文件	14
3	3.1.1 输入文件示例	14
	3.1.2 程序运行参数	14
3	3.1.3 程序任务关键词	15
	3.1.4 GEBF 与 CIM 任务关键词	15
3	3.1.5 其他	16
3.2	运行命令	16
3.3	运行脚本	16
第四章	GEBF 模块	18
4.1	关键词	18
4.2	GEBF 的分块方式	21
2	4.2.1 注意事项	21
2	4.2.2 自动分块	21
2	4.2.3 自定义分块	21
4.3	计算样例	24

	4.3.1	单点能	24
	4.3.2	结构优化	25
	4.3.3	频率计算	27
	4.3.4	核磁计算	
	4.3.5	局域激发态计算	
	4.4 更多计	十算样例	30
第五章	章 HF 杠	莫块	33
	5.1 关键	建词	
	5.2 输入	入样例	
	5.3 计算	算样例	
	5.3.1	标准 HF 单点能+一阶梯度	
	5.3.2	RI-HF 单点能+一阶梯度	
	5.3.3	含赝势 HF 结构优化	
	5.3.4	波函数稳定性优化	41
第六章	章 CIM	模块	42
	6.1 关键	建词	42
	6.1.1 (R	I-)MP2 与 DLPNO-CCSD(T)关键词	42
	6.1.2 CI	M 关键词	43
	6.2 CIN	✔ 并行设置	
	6.2.1 正	则 (RI-)MP2 并行设置	44
	6.2.2 CI	M-(RI-)MP2 并行设置	44
	6.2.3 CI	M-DLPNO-CCSD(T)并行设置	48
	6.3 输入	入样例	
	6.4 计算栏	羊例	52
	6.4.1	正则 MP2 单点能	52
	6.4.2	正则 RI-MP2 单点能	53
	6.4.3	CIM-MP2 单点能	55
	6.4.4	CIM-RI-MP2 单点能	56
	6.4.5	RI-MP2 梯度	57
	6.4.5 6.4.6	RI-MP2 梯度 CIM-RI-MP2 梯度	57

	6	.4.8 CIM-DLPNO-CCSD(T) 单点能	61
	6.5	更多计算样例	63
第七	章 PI	BC-GEBF 模块	66
	7.1	关键词	66
	7.2	单胞能量	68
	7.3	原子和晶矢上的力	71
	7.4	晶体结构优化	73
	7.5	振动频率(红外光谱、拉曼光谱)	74
	7.6	核磁屏蔽常数	75
第八	章 Pl	BC-CIM 模块	77
	8.1 🗧	关键词	77
	8.2 N	MP2 和 DLPNO-CCSD(T)计算	78
	8	.2.1 MP2 参数	78
	8	.2.2 DLPNO-CCSD(T)参数	78
	8.3	计算样例	80
	8	.3.1 PBC-CIM-RI-MP2 计算	80
	8	.3.2 PBC-CIM-DLPNO-CCSD(T)计算	83
引用		85	

GEBF 模块的引用	
CIM 模块的引用	
PBC-GEBF 模块的引用	
PBC-CIM 模块的引用	
CIM-DLPNO 模块的引用	

联系方式 89

第一章 程序介绍

1.1 关于程序

本程序为大体系电子结构计算提供了四种方法,分别是"普适的 基于能量分块方法"(Generalized Energy-Based Fragmentation, GEBF)、 "分子中的簇"(Cluster in Molecule, CIM)电子相关方法、"周期性普 适的基于能量分块方法"(GEBF under Periodic Boundary Condition, PBC-GEBF)和"周期性分子中的簇"(CIM under Periodic Boundary Condition, PBC-CIM)电子相关方法。

1.1.1 GEBF 模块

LSQC 中的 GEBF 模块是 GEBF 方法的一种高效的实现。

GEBF 的流程简述如下。1) 对目标体系进行分块。2) 将"块" 组合为静电嵌入的初始子体系 (primitive subsystem),并用氢原子封 端。3) 根据容斥原理推出衍生子体系 (derived subsystem),保证目标 体系的每个原子不重不漏。4) 用传统量子化学程序计算子体系的能 量或能量梯度(其他性质)。5) 组合这些能量或能量梯度(其他性质) 得到目标体系的能量或能量梯度 (其他性质)。

目标体系的能量表达为

$$E_{\text{tot}} = \sum_{m}^{M} C_m \tilde{E}_m - \left[\left(\sum_{m}^{M} C_m \right) - 1 \right] \sum_{A} \sum_{B > A} \frac{Q_A Q_B}{R_{AB}}$$
(1.1)

其中 \tilde{E}_m 表示第m个子体系(包含背景点电荷)的能量, C_m 表示第m个子体系的线性组合系数, Q_A 表示原子A上的电荷,M表示子体系的总个数。

而目标体系的全解析能量梯度为

$$\frac{\partial E_{\text{tot}}}{\partial \boldsymbol{q}_{A}} = \sum_{m}^{M} C_{m} \left(\frac{\partial \tilde{E}_{m}}{\partial \boldsymbol{q}_{A}} - F_{m,a} Q_{a} - \sum_{b} f_{ab} \right) + \left[\left(\sum_{m}^{M} C_{m} \right) - 1 \right] \sum_{b} f_{ab}$$
(1.2)

其中 A 表示给定子体系中的原子, a 和 b 表示点电荷中心, F_{m,a}表示 第 m 个子体系作用在电荷中心 a 的电场, f_{ab}表示 a 和 b 上电荷的库 仑相互作用

$$f_{ab} = \frac{Q_a Q_b}{|\boldsymbol{q}_a - \boldsymbol{q}_b|^3} (\boldsymbol{q}_a - \boldsymbol{q}_b)$$
(1.3)

为了省时,程序实际采用简化公式

$$\frac{\partial E_{\text{tot}}}{\partial \boldsymbol{q}_A} \approx \sum_m^M C_m \frac{\partial \tilde{E}_m}{\partial \boldsymbol{q}_A}$$
(1.4)

对原子上的梯度进行计算,并用之进行结构优化、振动频率计算等。 目标体系的性质为

$$\Omega_{\text{tot}} = \sum_{m}^{M} C_{m} \Omega_{m} , \Omega = \mu_{i}, \alpha_{ij}, \sigma_{ij}$$
(1.5)

其中 Ω_m 是第m个子体系的物理性质。

在普通工作站上,GEBF-X方法可以对数百乃至数千原子的体系 进行全量子计算。目前,这个方法已经成功应用于包括分子团簇、多 肽链、蛋白质和折叠体等多种大体系的计算。

静电嵌入的子体系的相关计算可由现有的量子化学软件完成,当

前版本只支持 Gaussian 系列软件。

当前版本支持半经验方法(AM1、PM3、PM6等)、HF、DFT(包括B3LYP、M06-2X等)和电子相关方法(MP2、MP3、MP4、CCSD、CCSD(T))水平的单点能计算,支持结构优化(Opt,Geometry Optimization)、频率计算(Freq,Frequency calculation)、红外强度、Raman强度、零点能、焓、Gibbs自由能、偶极矩、静态极化率、超极化率和核磁共振等。

1.1.2 CIM 模块

LSQC 中的 CIM 模块是 CIM 方法的一种高效的实现。CIM 局域 电子相关方法适合于对大体系进行 post-HF 计算。在 CIM 方法中,体 系的电子相关能被表达为所有占据轨道贡献的加和:

$$E_{\rm corr} = \sum_{i}^{N_{\rm occ}} \Delta E_i \tag{1.6}$$

以 MP2 和 CCSD 方法为例,给定的第 i 个占据轨道的贡献为

$$\Delta E_i = \frac{1}{2} \sum_{j,a < b} V_{ij}^{ab} \tau_{ab}^{ij} \tag{1.7}$$

其中 $V_{ij}^{ab} = \langle ij || ab \rangle$ 是双电子积分, MP2 方法中 $\tau_{ab}^{ij} = t_{ab}^{ij}$, CCSD 方法 中 $\tau_{ab}^{ij} = t_{ab}^{ij} + t_a^i t_b^j - t_a^j t_b^i$ 。式(1.6)和式(1.7)对正则分子轨道(canonical molecular orbital, CMO) 和局域分子轨道 (localized molecular orbital, LMO) 都是成立的。

下面将体系中的占据正则分子轨道(occupied CMOs)或簇中的 占据准正则分子轨道(occupied quasi-CMOs, occupied QCMOs)记为 *i、j、k*等,而空正则分子轨道记为*a、b、c*等;将相应的局域分子轨 道用带'的符号标记为*i'、j'、k'、a'、b'、c'*等。在 CIM 框架下,每个 局域占据分子轨道分别充当一次中心分子轨道,加上与之空间相邻的 占据轨道和空轨道,共同构成一个轨道簇,记为簇*P*。这样,对于给

定的局域占据分子轨道,其相关能的贡献可以通过解簇 P 的 MP2 或 CC 方程而获得:

$$\Delta E_{i' \in \{P\}} = \frac{1}{2} \sum_{j' \in \{P\}} \sum_{a' < b' \in \{P\}} V_{i'j'}^{a'b'} \tau_{a'b'}^{i'j'}$$
(1.8)

在簇构建完成后,我们将每个簇中的局域轨道转换为准正则轨道。 使用准正则轨道可以避免 MP2 和 CCSD(T)中的(T)部分的迭代求解, 还可加速 CCSD 方程的收敛。准正则轨道由局域轨道通过酉变换得 到,其中酉矩阵 R 来自于 Fock 矩阵占据块和非占据块的对角化

$$\mathbf{F}\mathbf{R} = \mathbf{R}\boldsymbol{\varepsilon} \tag{1.9}$$

$$|i\rangle = \sum_{i' \in \{P\}} R_{i'i} |i'\rangle \tag{1.10}$$

其中ε是对角矩阵(对角元为准正则轨道的能量)。代入式(1.8)

$$\Delta E_{i' \in \{P\}} = \frac{1}{2} \sum_{j \in \{P\}} \sum_{a < b \in \{P\}} \overline{V}_{i'j}^{ab} \overline{\tau}_{ab}^{i'j}$$
(1.11)

而

$$\bar{V}_{i'j}^{ab} = \sum_{i \in \{P\}} R_{ii'}^+ V_{ij}^{ab}$$
(1.12)

$$\bar{\tau}_{ab}^{i'j} = \sum_{i \in \{P\}} R_{ii'}^+ \tau_{ab}^{ij}$$
(1.13)

其中 R⁺是 R 的转置矩阵。

当前版本支持 CIM-MP2 和 CIM-RI-MP2 水平的计算,也支持中 等大小体系(可以有背景电荷嵌入)的传统 MP2 和 RI-MP2 的计算。

1.1.3 PBC-GEBF 模块

LSQC 中的 PBC-GEBF 模块是 PBC-GEBF 方法的一种高效的实现,面向周期性凝聚相体系。按照 PBC-GEBF 方法,周期性体系被分解为若干静电嵌入的子体系,具体构建方法与大分子类似。这些子体

系嵌入在截断的背景电荷中,背景电荷产生的偶极用补偿场方案消除。 目标体系的 PBC-GEBF 单胞能量表达为

$$E_{\text{tot}} = \sum_{m}^{M} C_{m} \left(\tilde{E}_{m} - \sum_{A \in K} \sum_{(B > A) \in K} \frac{Q_{A} Q_{B}}{R_{AB}} \right) + E_{\text{Ewald}}$$
(1.14)

其中 E_{Ewald} 是平均到单胞的经典电荷-电荷相互作用,通过 Ewald summation 方法计算。

当前的PBC-GEBF模块支持杂化泛函、post-HF方法、弥散基组、 色散校正等在周期性体系下的高效计算,可以计算分子晶体或液体的 基态单胞能量、结构优化、频率计算(红外/Ramam 光谱)、核磁屏蔽 常数、VCD 光谱等。默认每个分子作为一"块",也可以进行自定义 分块。

1.1.4 PBC-CIM 模块

LSQC 中的 PBC-CIM 模块是 PBC-CIM 方法的一种高效的实现, 面向周期性体系的 post-HF 计算。在 PBC-CIM 方法中,体系的电子 相关能被表达为所有一个单胞内(记作 0 号单胞)占据轨道贡献的加和:

$$E_{\rm corr} = \sum_{i \in \mathbf{0}}^{N_{\rm occ}} \Delta E_i \tag{1.6}$$

构造簇的方法与分子的 CIM 类似, 但要考虑平移对称性。在 PBC-CIM 框架里, 占据轨道是 Wannier 轨道。每个 Wannier 轨道分别充当 一次中心轨道, 加上与之空间相邻的 Wannier 轨道和空轨道(以一个 距离 ξ 截断), 共同构成一个轨道簇, 记为簇 P。这样, 对于给定的 Wannier 轨道, 其相关能的贡献可以通过解簇 P 的 MP2 或 CC 方程而 获得, 簇内的计算与分子相同:

$$\Delta E_{i' \in \{P\}} = \frac{1}{2} \sum_{j' \in \{P\}} \sum_{a' < b' \in \{P\}} V_{i'j'}^{a'b'} \tau_{a'b'}^{i'j'}$$

1.2 必备技能

本程序面向熟悉理论与计算化学的研究者。

在使用本程序之前,您应当:

- ▶ 对Linux 系统的操作比较熟悉,
- ▶ 正确地使用 Gaussian 计算体系的单点能、结构优化和频率等。
- ▶ 对于 PBC-CIM 计算,需正确使用 CRYSTAL 计算 PBC-HF 和 Wannier 函数

1.3 手册的组织结构

手册旨在让您了解并能够自如地使用 LSQC 程序,手册编排如下。

- ◆ 第一章 (本章),介绍程序和手册的情况。
- ◆ 第二章, LSQC 程序的安装。
- ◆ 第三章, 任务的准备和提交。
- ◆ 第四章, GEBF 模块介绍。
- ◆ 第五章, HF 模块介绍。
- ◆ 第六章, CIM 模块介绍。

◆ 第七章, PBC-GEBF 模块介绍。

- ◆ 第八章, PBC-CIM 模块介绍。
- ◆ 引用和联系方式。

1.4 标识约定

无特殊标识的文字(仿宋字体或 Times New Roman 字体)用于 陈述和解说。

<*.xxx>表示后缀名为".xxx"的文件,文件名不包括尖括号。

带阴影的文字(Sitka Text 字体)是需要键盘输入的 Linux 命令,每一行结尾请您自行补充键入"Enter"。

虚框内的文字(Calibri 字体)是文件中的内容,可能是需要 您准备的输入文件,也可能是您可以检查的输出文件。

实线框内的文字是 Linux 系统屏幕内容的截图。

加粗的斜体文字可以根据用户的个人喜好和实际情况选择是否保留。

带下划线的文字可以根据用户的个人喜好和实际情况修改,但除非同时也是**加粗斜体**,否则不得删除。

加着重号的文字强调可能被忽视的重要词句。

蓝底色的文字是对文件或截图 的解释说明。例如,这个"截图" 是用文本框伪造的,以后的才是 真正的截图。

第二章 程序安装

为了提高安装的成功率,请您认真阅读1.4 中的标识约定。 安装开始之前,请您先确认是否准备了必需的软件。

▶ Python3 和 NumPy。(通常都在 Anaconda 包中)

以下是各模块的基础需求。

- ➤ GEBF 模块的绝大部分功能需要量子化学计算软件 Gaussian (09 或 16 版本)。目前部分支持调用 HF 模块计算 (gver=no)。
- CIM 模块需要 Intel OpenMP、Intel MPI。(建议个人用户安装 Intel® oneAPI Base Toolkit 2019 或更新版),超算用户可以使用 module load 加载 Intel 并行库环境)。
- PBC-CIM 模块需要安装 PySCF (<u>https://github.com/pyscf/pyscf</u>), CRYSTAL (<u>https://www.crystal.unito.it</u>)。CRYSTAL 直接提供可执 行程序,无需编译。请确保 Pcrystal 和 properties 两个执行文件可 正确运行。

以下是个别功能和性能提升的需求。

- ▶ GEBF 模块的局域激发(TD-DFT)功能需要 numba 和 scipy。
- CIM 模块和 HF 模块如果要做结构优化,需要安装 geomeTRIC (<u>https://github.com/leeping/geomeTRIC</u>)。
- ➤ CIM 模块如果使用曙光 DCU 加速 CIM-RI-MP2,需要安装 DTK 驱动(<u>https://cancon.hpccube.com:65024/1/main/DTK-22.10.1</u>)。
- CIM 模块如果使用 Nvidia GPU 加速 CIM-RI-MP2,需要安装 Cuda 11 驱动(<u>https://developer.nvidia.com/cuda-toolkit</u>)。
- ▶ PBC-GEBF 模块如果要做结构优化,需要安装 ASE(3.20.0-3.22.1)
 和 spglib (作为 python 库)。

做好准备工作后,下面开始安装。

 为软件创建或设置一个安装路径(如: <u>/home/Tom/</u>)并进入。 cd /home/Tom/

2. 获取 LSQC 软件的安装包(见 <u>http://itcc.nju.edu.cn/lsqc</u>),将安 装包传送到该文件夹下并解压。

tar -xvf lsqc-3.0.tar.bz2

解压完成,查看文件,您将看到:

lsqc-3.0 lsqc-3.0.tar.bz2

3. 进入解压出的文件夹

cd lsqc-3.0

您将看到:

bin example scripts share

其中 bin 目录包含 LSQC 的可执行文件, example 目录中是各模块的例子, scripts 目录包含一些辅助运行本程序的脚本, share 目录包含程序运行所需的数据。

LSQC 的安装到此结束。

第三章 提交 LSQC 任务

- 3.1 输入文件
- 3.1.1 输入文件示例

设置<*.chk> 文件。

本软件支持直接使用 Gaussian 输入文件<*.gjf>作为输入文件, 一份典型的<*.gjf>文件格式如下。

输入文件对大小写不敏感。在输入文件的末尾应有空行,表示输入结束。

3.1.2 程序运行参数

输入文件开头以"%"为首的行是程序的运行参数,用于指定基本的程序运行参数,如内存、并行等。

- "%NProc"用于指定 HF 以及 GEBF 子体系的并行核数, 默 认为 4。
- "%NProccim"用于指定CIM子体系的并行核数,默认为24。
- "%Mem" 用于指定 HF 以及 GEBF 子体系的内存, 默认为

1GB°

- "%Njobs"用于指定同时进行计算的子体系个数,适用于 GEBF 与 CIM。GEBF 默认值为 4, CIM 默认值为 1。
- "%GPU"是 CIM 关键词,表示使用 GPU 加速子体系计算, "%GPU=cuda"表示使用 Nvidia GPU 加速, "%GPU=hip" 表示使用曙光 DCU 加速。默认不启用。
- "%NGPU"是CIM关键词,表示每个节点使用的GPU卡数。
- "%GVer"是 GEBF 关键词,用于指定子体系计算使用的高 斯版本,其值可以为"g16"(默认值)或"g09"。
- "%Parallel"是 GEBF 关键词,设置"%Parallel=True"表示 使用 LSF (Load Sharing Facility)作业管理系统进行多节点并 行。默认不启用。
- "%TotCPU"是 GEBF 关键词,需要与"%Parallel=True"联用,表示多节点并行使用的总 CPU 核数,默认为 48。

3.1.3 程序任务关键词

输入文件开头以"#"为首的行是程序的任务关键词,用于指定计 算水平,基组,计算任务,以及自洽场迭代参数。

当前 GEBF 与 PBC-GEBF 调用高斯程序接口进行子体系计算, 支持单点能、梯度、频率、核磁等计算任务。特别的,如果使用 PBC-GEBF 进行结构优化,还需要参照第二章安装 ASE。

HF、CIM 模块的基本计算不依赖于外部程序,当前支持单点能与梯度计算。特别的,如果需要进行结构优化,需要参照第二章安装geomeTRIC。

PBC-CIM 当前仅支持计算单点能。此外,该模块还依赖于 CRYSTAL 进行 PBC-HF 计算。CRYSTAL 的安装参考第二章。

3.1.4 GEBF 与 CIM 任务关键词

在LSQC的输入文件中,原来高斯输入文件的标题行是LSQC程 序的关键词,各个模块对应不同的关键词,将在对应的章节内具体介

绍。

3.1.5 其他

对于 PBC-CIM 模块,还需按照 CRYSTAL 规范准备 PBC-HF 和 Wannier 计算的输入文件 INPUT_HF 和 INPUT_WF。坐标和晶格参数 在 INPUT_HF 中给定,gjf 文件中可不写。

3.2 运行命令

LSQC 的运行命令是

lsqc <input file>

例如:

lsqc water.gjf

3.3 运行脚本

由于在程序运行时需要设置较多环境变量,因此建议用户编写脚本运行 lsqc,下面是一个脚本示例。

用户在配置时需要根据软件的安装目录,正确填写 lsroot, PYTHONPATH (geometric 安装目录,HF 与 CIM 结构优化需要,如 果不进行相关计算可以不修改该行),以及 GAUSS_SCRDIR (scratch 目录,GEBF 计算需要,如果不进行相关计算可以不修改该行)。

在工作目录创建名为 run.sh 的文件,写入上述内容,然后用下方命令即可启动任务。

nohup sh run.sh 1> run.log 2>&1 &

第四章 GEBF 模块

LSQC 程序中的 GEBF 模块可以对大体系进行半经验、HF、DFT 和电子相关方法水平的单点能计算,并支持结构优化、频率计算,以 及红外强度、Raman 强度、零点能、焓、Gibbs 自由能、偶极矩、静 态极化率、超极化率和核磁共振等性质的计算。

本章节介绍了与 GEBF 计算有关的关键词,子体系的分块方法, 以及一些实际的 GEBF 计算样例。

GEBF 子体系的计算目前依赖于 Gaussian 程序, 您需要拥有合法的 Gaussian 软件并正确引用。

4.1 关键词

标题行的用于本软件的参数设置,格式为:

gebf {关键词 1=参数 1 关键词 2=参数 2 以此类推}

下面分别介绍各关键词含义及其可选参数。

♦ charge

关键词 charge 用于设置背景点电荷的来源。允许的参数如下。

 \triangleright charge = none

不使用背景点电荷。AM1、PM3 等半经验方法选用此项。

➤ charge = NPA (默认)

使用 NPA 电荷。

 \triangleright charge = ESP

使用 ESP 电荷。

使用 MUL 电荷。

\triangleright charge = read

由使用者提供电荷数据。这里可以选择使用本软件运行结果中的 <*.cha>文件,也可以自行准备该文件。<*.cha>每行规定一个原子的

点电荷信息,每行格式如下:

Ē				
i.	西又伯旦	二主於口	山井米田	
i.	尿丁细丂	儿系付亏	电何数据	
Í.			(

例如:

r			·		i.
ł	1	(С	-0.065739	ł
ι					J.

• dis=r

关键词 dis 用于限制子体系的规模。子体系扩大会导致计算量增加,同时也提高计算精度。r 的单位为 Å,默认值为 4.0 (Å)。

♦ frag

关键词 frag 用于设置分块方式。默认值为 frag=auto。作为本软件的核心关键词,分块方式有多种,将在第4.2节中详细介绍。

♦ local

关键词 local 表示只做部分子体系的计算,减少计算量。目前支持核磁计算,需要在坐标后补充"localnmr"关键词。

Г	 	-		 -		 -		-				-		-			-				-			-		-	 	-	 	 -	 	 -	 ٦.
ł					Ν	-7	7.5	57	73		().:	10)2		0	.1	98	3		l	oc	a	In	m	r							1
L,	 		-	 		 		-		-	-		-		-					-					-		 -		 -	 -	 -	 	 4

◆ maxsubfrag=*n*

关键词 maxsubfrag 同样用于限制子体系的规模。每个初始子体系包含"块"的个数不会超过 n。默认值为 6。

◆ twofrag

关键词 twofrag 用于添加更多含有两个"块"的子体系。

◆ 样例

例1 全部采用默认值

gebf {}

软件将自动解读为:

gebf { charge = NPA dis=4.0 maxsubfrag=6 frag = auto }

例2 设置一个关键词

gebf {dis=4.5}

软件将自动解读为:

gebf { charge = NPA dis=4.5 maxsubfrag=6 frag = auto }

例3 设置多个关键词

gebf { dis=4.5 maxsubfrag=8 twofc frag=conn }

软件将自动解读为:

gebf{charge=NPA dis=4.5 maxsubfrag=8 frag=conn maxsubfrag=6 twofc }

4.2 GEBF 的分块方式

4.2.1 注意事项

合理的分块使计算变得经济,而不合理的分块会导致不可接受的 结果。对此,我们有以下建议。

▶ 对于共价键连体系,每块中的非氢原子至少应有2个。

▶ 对于不处于常见价态的原子,应手动分块。

▶ 不要破坏共轭体系。例如苯环、肽键等应当归入一块。

4.2.2 自动分块

 \blacktriangleright frag = auto

自动分块,软件默认分块方式。会识别非氢原子和部分官能团, 并据此分块。方案细节见引用文献。

 \succ frag = link

根据距离确定连接度进行分块。此方法分块不切断化学键,适合 分子团簇的计算。

 \blacktriangleright frag = protein

对蛋白质分子、DNA/RNA 分子、溶剂小分子的自动分块。

 \blacktriangleright frag = DNA

效果与 frag=protein 一致,即将弃用。

4.2.3 自定义分块

若对自动分块的结果不满意,您也可以使用以下方法自定义分块。 当元素为金属或元素不处于常见价态时,必须对该原子自定义分块。 ▶ frag = conn

基于 Gaussian 程序关键词 "geom=connectivity"的分块。这种分 块要求<*.gjf>文件附有连接度信息,可以用 GaussView 辅助完成。

例如, C₃₀H₆₂按如图方式设定了连接度后,软件将根据连接度将 其分为15块。

	🔛 G2:M1 - Bond Semichem Sm	nartSlide (tm)	×
	Bond Type:		
	Can be any	y bond type for fragment matching	
	Bond:		
	Atom 1: Translate gro	Atom 2: Fixed -	
×			
	0. 77000	1.53695	3.08000
	0k	Cancel <u>H</u> elp	
00-00			
· · · · · · · · · · · · · · · · · · ·			
a An			5
		19 Jacob	
	<u> </u>		
y 🖉 🧕 🖉			
	5 🗸 🖓 🗸	· •	
J 🚽			
🗓 G2:M1:V1 - Gaussian Calculation Setu	0		×
Title: 1sqc { dis=4.0 maxsubfr	ag=5 frag=conn }		
Keywords: # opt=maxstep=10 b3lyp/ Charge/Mult.: 0 1	6-31g(d) geom=connectivity		
Job Type Method Title Link O	General Guess Pop. PBC	Solvation Add. Inp. Previ	ew
Use Quadratically Convergent SCF	🗌 Ignore Symmetry	🗹 Write Cartesians	
🗹 Use Modified Redundant Coordinates	Use Counterpoise	🗹 Write Connectivity	
🗹 Write Gaussian Fragment Data	🗌 Additional Print	🗹 Write FDB Data	
🗌 Compute Polarizabilities	Compute Optical Rotations	Read Incident Light Freq	5 Default 🔻
□ Use MaxDisk= 2 🗘 GB	~		
- Read Data From Checknoint File			
Geometry: No		•	MO Guess
Optimization Force Constants: No	•		
			Heln
			летр
Additional Keywords: opt=maxstep=10			Update
Scheme: (Unnamed Scheme)		🔻 🍳 Assign t	o Molecule Group
Submit Quick 1	Launch Cancel Edit	Retain Defaults	

 \succ frag = read

如果您想使用上次的分块方法,复制<*.frg>文件到工作路径并用 这个关键词。<*.frg>文件也可以由您自行准备的。

<*.frg>文件每一行规定一个块,每行格式如下:

山伯口	白花夕舌庄	(北后西之伯旦)	山井松
送 火 细 万	<u> 日 </u>	(非刭尔丁细万)	<i>电何致</i> 1
·			

其中非氢原子编号用","分隔,用"-"表示连续编号的省略, 电荷数有默认值 0。例如,

4.3 计算样例

文件夹\$lsroot/example/GEBF 包含了这一节中的所有例子。

4.3.1 单点能

例:水簇(H₂O)₁₀在GEBF(3.0,4)-CCSD/cc-pVTZ水平的单点能计算

输入文件为<h2o_ccsd.gjf>。

%chk=h2o_ccsd.chk %nproc=4 %njobs=6 %Gver=g16 %mem=20gb # ccsd/cc-pvtz gebf { dis=3.0 maxsubfrag=4 frag=link } 0 1 0 0.083 -1.617 0.245 ...

提交作业,LSQC 会为这个作业建一个名为"h2o_ccsd"的文件 夹。主要的信息将在<h2o_ccsd.txt>中提供。


```
Read parameters from .keys file: h2o_ccsd.keys
Read geometry from .xyz file: h2o_ccsd.xyz
.....
The largest subsystem is No.1 with 232 basis functions.
 GEBF(3.0,4)-CCSD/cc-pvtz energy:
 SCF =
            -760.530426
. . . . . .
 CCSD =
             -763.258113 E(CORR) =
                                               -2.727688
Dipole Moment (field-independent basis, Debye):
 X= -0.8332 Y= -2.7750 Z= 4.3232 Tot=
                                                    5.2043
. . . . . .
Real time: 0:10: 20.615857
```

参数设置和中间文件保存在文件夹"h2o_ccsd"中,子体系的计 算细节则保存在文件夹"h2o_ccsd_subsys"中。

GEBF只要10分钟,而标准程序计需要100分钟左右。

4.3.2 结构优化

本程序中, Gaussian 程序用 GEBF 计算获得的力进行结构优化, 您可以根据需要选用 Gaussian 中的关键词。

例: n-C₃₀H₆₂在GEBF(4.0,5)-HF/6-31G的结构优化。

输入文件为<c30h62_40-5.gjf>。

%mem=10GB %nprocshared=2 %njobs=12 # hf/6-31g opt gebf { dis=4.0 maxsubfrag=5 frag=conn } 0 1 C 0.10719300 8.13647800 0.96036200 ...

主输出文件为<c30h62_40-5.log>。

	Item	Value	Threshold	Converged?
Maximu	m Force	0.003245	0.000450	NO
RMS	Force	0.000381	0.000300	NO
Maximu	m Displaceme	ent 2.865172	0.001800	NO
RMS	Displaceme	ent 0.572324	0.001200	NO
Predicte	d change in E	nergy=-7.67684	49D-04	
	Item	Value	Threshold	Converged?
Maximu	m Force	0.000015	0.000450	YES
RMS	Force	0.000002	0.000300	YES
Maximu	m Displaceme	ent 0.000642	0.001800	YES
RMS	Displaceme	ent 0.000144	0.001200	YES
Predicte	d change in E	nergy=-2.60635	58D-09	
Optimiza	ation complet	ed on the basis	of negligible	forces.
Sta	ationary point	t found.		
Normal te	ermination of	Gaussian 16 at	Sat Oct 26 17	:04:43 2019.

4.3.3 频率计算

例: *n*-C₃₀H₆₂在 GEBF- HF/6-31G 水平的频率(红外)计算。结构来自 4.3.2 的计算结果。

输入文件为<c30h62_40-5_opted.gjf>。

%mer %npro # hf/6	m=10GB ocshared=6 5-31g freq		
gebf {	dis=4.0 maxsubfrag=	5 frag=conn }	
01 C	-0.97866700	8.45496000	-0.58587800

主输出文件是<c30h62_40-5_opted.log>。

		1	2	3	
		А	А	А	
Frequencies		2.7657	5.3066	8.8183	
Red. masses	;	4.0254	4.1561	4.1877	
Frc consts		0.0000	0.0001	0.0002	
IR Inten		0.0000	0.0005	0.0005	
Normal termi	nati	on of Gaus	sian 16 at	Sat Oct 26 17	7:17:24 201

4.3.4 核磁计算

例: (Ala)₁₀ 在 GEBF(3.0,3)-B3LYP-D3(BJ)/6-31G*水平的 NMR 计 算。(结构是 GEBF(3.0,3)-B3LYP-D3(BJ)/6-31G*水平的稳定结构) 输入文件为<ala10_30-3.gjf>。

%chk=mol.chk				
%nprocshared=6				
%gver=g16				
%mem=30GB				
# b3lyp/6-31g* em=gd3bj nmr int=(ultrafine,acc2e=10)				
scf=(tight,xqc)				
gebf { dis=3.0 maxsubfrag=3 frag=protein }				
01				
Ν	-14.73925100	0.18468300	0.12108600	

核磁屏蔽张量在<ala10_30-3.txt>报道。

4.3.5 局域激发态计算

例: 溶剂化尿嘧啶在 GEBF(3.0,4)-ωB97X-D/6-31G*水平的局域 激发态计算。

输入文件为<ura.gjf>。


```
%chk=ura_gs_tip4pfb_6_npt_qmmm_r5-0_00050.chk
%NProcShared=4
%njobs=12
%mem=10gb
#p wb97xd/6-31g(d) TD=(NStates=7,root=1)
gebf{frag=link dis=3 maxsubfrag=4 twofrag}
01
Ν
      0.000000
                    0.000000
                                  0.000000
                                                localtd
С
     -0.800000
                    0.734000
                                  0.925000
•••
```

核磁屏蔽张量在<ura.txt>报道。

```
...
Local Excited State 1: 5.3307 eV 232.58 nm f=0.0029 ||
r=0.01
Local Excited State 2: 5.3441 eV 231.99 nm f=0.1807 ||
r=0.02
...
Total Excited State Energy:
TD-WB97XD = -4234.597954
...
```


4.4 更多计算样例

本节介绍更多更具挑战性的例子,其输入输出同样包含在 \$lsroot/example/GEBF。

● 绿色荧光蛋白基态计算

wb97xd/def2tzvp

gebf{dis=3.5 frag=read charge=read maxsubfrag=5}

 DS-SO₂-β-CD 水溶液团簇体系激发态计算 wb97xd /cc-pVTZ td=(nstates=20,root=1) gebf{dis=4 maxsubfrag=6 frag=read}

使用1个48核的节点计算,耗时72h。
BrNp-β环糊精激发三重态特征计算 opt td=(nstates=5,root=1,triplets) m062x/6-31g* gebf{frag=read maxsubfrag=4}

T1 态优化的能量变化曲线

GEBF 方法准确地优化了体系的 T1 态构象并成功预测了体系 在实验上的一个发射峰位置。

第五章 HF 模块

LSQC 程序中的 HF 模块支持计算 RHF、UHF、ROHF 水平的单 点能与一阶梯度,并且可以使用 RI 近似加速 Fock 矩阵构造。它可以 直接被 LSQC 程序调用,下一章要介绍的 CIM 模块也会调用本模块 进行前置的 HF 计算。

本章节介绍了与 HF 计算有关的关键词,以及一些实际的 HF 计算 样例。

5.1 关键词

本部分介绍的关键词需要写在以"#"开头的行,更多有关输入 文件的信息见第三章。

rhf (hf), uhf, rohf

进行 RHF、UHF、ROHF 计算

➤ conv=

自洽场迭代的能量收敛限,默认值为1e-9。

> maxcycle=

自洽场最大迭代圈数,默认值为50。

> stable

进行波函数稳定性分析,若输入为 stable=opt,则进行波函数稳 定性优化(RHF->UHF, UHF->UHF)。默认不启用。

➤ acc2e=

双电子积分的屏蔽阈值,默认值为13(即忽略小于1e-13的双电子积分)。

≻ rij

使用 RI-J 近似加速 Fock 矩阵构造(支持单点能与一阶梯度计算)。默认不启用。

rijk

使用 RI-JK 近似加速 Fock 矩阵构造(支持单点能与一阶梯度

计算)。默认不启用。

➤ aubs=

定义 RI 近似使用的辅助基。该参数没有默认值,若使用 RI 近似加速则必须指定。(注意该辅助基只用于 HF 计算,电子相关计算的辅助基的指定见下一章)

➢ genecp

使用赝势基组,需要为每个元素指定使用的基组和赝势基组。定 义方法为在几何结构区域后空一行,然后逐元素指定,如

N cc-pvdz N Pt cc-pvdz-pp	使用 cc-pvdz 基组
Pt cc-pvdz-pp ecp	Ft 使用 cc-pvdz-pp
(见 5.2 中的输入样例)	Pt 使用 cc-pvdz-pp 中的 赝势描述内层电子

> guess=

设置初猜方式,支持 minao(原子密度叠加,默认),read(从.scfchk 文件中读取)以及 hcore (对角化单电子 Fock 矩阵)。另外对于单重 态 UHF 计算,可以使用 guess=mix 关键词混合 HOMO、LUMO 轨道, 得到对称性破缺初猜。

5.2 输入样例

RHF 输入样例:

UHF 输入样例:

%mem=1GB %nprocshared=4 # uhf/cc-pvdz force guess=mix {} 0 1 C 0.0 0.0 0.0 ...

带赝势基组的输入样例:

5.3 计算样例

文件夹\$lsroot/example/HF 包含了这一节中的所有例子。

5.3.1 标准 HF 单点能+一阶梯度

输出文件<std-C134H92N12O6.scflog>

5.3.2 RI-HF 单点能+一阶梯度

输入文件<rij-C134H92N12O6.gjf>

输出文件<rij-C134H92N12O6.scflog>

5.3.3 含赝势 HF 结构优化

(虚化结构为初始结构,实心结构为优化结构, 中心原子是带赝势的 Co)

输入文件<uhf-ecp.gjf>

%nproc=72 %mem=60GB # uhf/genecp opt=loose maxcycle=200 {} 02 0.01018400 -0.02186000 -0.02065000 Со S 5.27233900 -1.73539800 1.18803500 ... -1.42693200 -2.59609900 2.46497800 Η Co lanl2tz C ccpvdz H ccpvdz O ccpvdz N ccpvdz S ccpvdz Co lanl2tz ecp

输出文件<uhf-ecp-geometric.log>

```
...

Step 57 : Displace = 2.642e-03/6.368e-03 (rms/max) Trust = 3.000e-01

(=) Grad = 4.723e-05/1.907e-04 (rms/max) E (change) = -3330.7705736275 (-

8.601e-07) Quality = 1.019

Hessian Eigenvalues: 8.95352e-05 8.68029e-04 1.44690e-03 ...

1.05829e+00 1.18685e+00 1.21345e+00

Converged! =D

...
```


输入文件<stable-opt.gjf>

```
%nproc=56
%mem=60GB
# rhf/ccpvtz stable=opt
{}
0 1
C -8.5595 0.7178 -0.0117
C -8.56 -0.7247 -0.0046
...
H 7.4058 2.5222 0.0062
```

输出<stable-opt.scflog>

第六章 CIM 模块

CIM 模块目前支持 (RI-)MP2 水平的单点能与一阶梯度计算,以及 DLPNO-CCSD(T) 水平的单点能计算,同时支持在 CIM-(RI-)MP2 水平进行结构优化。

该模块支持 CPU 节点内与跨节点并行,同时 CIM-(RI-)MP2 单点能计算还可以使用 Nvidia GPU 或曙光 DCU 进行跨节点多卡并行加速。

当前 CIM 子体系的 DLPNO-CCSD(T) 计算依赖于 ORCA 程序。

6.1 关键词

在进行 CIM 计算前需要进行标准 HF 计算,所有 HF 相关关键词 见第五章。

6.1.1 (RI-)MP2 与 DLPNO-CCSD(T)关键词

> mp2, rimp2, dlpno-ccsd, dlpno-ccsd(t)

进行 mp2, rimp2, dlpno-ccsd 或 dlpno-ccsd(t)计算。该关键词为 计算水平,需要写在"#"开头的行。

后面介绍的所有关键词都需要写在 CIM 关键词区域,即原来高斯输入文件的标题行,并用"{}"包裹起来。

对于正则计算, 写法为

{关键词 1=参数 1 关键词 2=参数 2 以此类推}

对于CIM 计算,写法为

cim{关键词 1=参数 1 关键词 2=参数 2 以此类推}

不冻结核轨道,亦即所有占据轨道都是相关的。默认将能量低于 -3.0 a.u.的轨道设置为冻结的核轨道。当前程序仅支持不冻结核的梯 度计算。

➤ thre

双电子积分的收敛限。这里采用负对数的形式,例如 thre=11 表述收敛限为 10⁻¹¹。默认值是 thre=12,即 10⁻¹²。

➤ aubs

设置(CIM)-RI-MP2 或 DLPNO-CCSD(T)计算的辅助基函数。这 个参数没有默认值,必须手动设置。

6.1.2 CIM 关键词

> dis

构建分子轨道域的截断距离,单位为 Å。CIM-MP2 的默认值为 5.5 (Å), CIM-RI-MP2 的默认值为 6.0 (Å)。

➤ virt

设置 PAO 投影的截断,默认值是 0.05。用户通常无需设置此关键词,除非某个簇中 HOMO 轨道的能量高于 LUMO 的能量,此时,应当将截断设置为更小的数值,如 0.03。

6.2 CIM 并行设置

6.2.1 正则 (RI-)MP2 并行设置

正则 (RI-)MP2 仅支持单节点并行,并行所用 cpu 核心数由输入 文件中的 %nprocshared= 指定。

6.2.2 CIM-(RI-)MP2 并行设置

CIM-(RI-)MP2 支持节点内以及跨界点并行,以及使用 Nvidia GPU (cuda 驱动)或曙光 DCU(hip)进行加速。下面介绍各种并行方式。

1. 单子体系-多核并行

在输入文件开头使用"%nproccim=24"设置单个子体系使用 24 核并行,使用"%njobs=1"设置一次只计算1个子体系。 输入文件<job.gif>

%nproccim=24 %njobs=1 ...

在计算时,程序会从第一个子体系开始,逐个计算,直至完成 所有子体系。

2. 多子体系-多核并行(需要 Intel MPI)

2.1 单节点,无作业管理系统

在输入文件开头使用"%nproccim=24"设置单个子体系使用 24 核并行,使用 "%njobs=4"设置同时运行 4 个子体系。 输入文件<job.gjf>

2.2 多节点,无作业管理系统

在输入文件开头使用"%nproccim=24"设置单个子体系使用 24 核并行,使用 "%njobs=8"设置同时运行 8 个子体系。同时编写 hostfile 指定任务的计算节点。

输入文件<job.gjf>

%nproccim=24 %njobs=8 ...

额外编写的<hostfile>

上面的 hostfile 表示在{HOSTNAME1}上运行{NSLOT1}个子体系, 在{HOSTNAME2}上运行{NSLOT2}个子体系……

{NSLOT1}+ {NSLOT2}+...应当等于 njobs。

2.3 单节点/多节点, LSF 作业管理系统

在输入文件开头使用"%nproccim=24"设置单个子体系使用 24 核并行,使用"%njobs=8"设置同时运行 8 个子体系,并编写 LSF 运行脚本。

输入文件<job.gjf>

提交 LSF 运行脚本

bsub < lsf.sh

2.4 单节点/多节点, SLURM 作业管理系统

在输入文件开头使用"%nproccim=24"设置单个子体系使用 24 核并行,使用"%njobs=24"设置同时运行 24 个子体系,并编写 SLRUM 运行脚本。

输入文件<job.gjf>


```
%nproccim=24
%njobs=24
...
```

SLURM 运行脚本<slurm.sh>

提交 SLURM 运行脚本

sbatch lsf.sh

3. GPU 并行

对于 GPU 并行,一个节点只能运行 1 个子体系,因此"%njobs" 应当等于并行的节点数。每个节点都支持使用多张 GPU 或 DCU 加速子体系计算。当前 GPU 并行仅支持 CIM-RIMP2。

在输入文件开头使用"%nproccim=24"设置单个子体系使用 24 核并行,"%gpu=cuda"使用 Nvidia GPU 或"%gpu=hip"使用曙光 DCU。"%ngpu=4"表示一个节点使用 4 张 GPU。"%njobs=2"表示 在两个 GPU 节点上并行。

注意, Nvidia GPU 加速必须在 CUDA11 环境中运行。

输入文件<job.gjf>

٢		 	
%npr	occim=24		
%njo	os=2		
%gpu	=cuda		
%ngp	u=4		

6.2.3 CIM-DLPNO-CCSD(T)并行设置

CIM-DLPNO-CCSD(T)支持使用 OpenMPI 进行单子体系多核并行,子体系并行所用 cpu 核心数由输入文件中的 %nproccim= 指定。

6.3 输入样例

正则 MP2 输入样例:

正则 RI-MP2 输入样例:

CIM-MP2 的输入样例:

CIM-RI-MP2 的输入样例:

CIM-DLPNO-CCSD(T)的输入样例:

%mem=1GB %nprocshared=16 %nproccim=16

dlpno-ccsd(t)/cc-pvdz

cim{dis=6 aubs=cc-pvdz-ri}

0 1 C 0.0 0.0 0.0

•••

6.4 计算样例

文件夹\$lsroot/example/CIM 包含了这一节中的所有例子。

6.4.1 正则 MP2 单点能

输入文件<HPi.gjf>

%mem=5 %nprocsl # mp2/co	50GB hared=24 c-pvdz		
{} 01 C	4.90011200	-2.45613900	0.26795800

输出文件<HPi.out>

==== Canonical MP2 Module ==== Number of basis functions : 1206 Number of occupied orbitals 236 : Number of frozen core orbitals: 64 Number of correlated orbitals : 172 Number of virtual orbitals : 970 ... Hartree-Fock energy : -2921.9089102982 MP2 correlation energy: -9.2427388985 Total MP2 energy : -2931.1516491967 ... Job elapsed time: 75.52 min ...

6.4.2 正则 RI-MP2 单点能

输入文件<twopep.gjf>

%mem=160GB %nprocshared=48 # rimp2/cc-pvdz {aubs=cc-pvdz-ri} 0 1 0 1.63457100 3.46400800 3.87096600 ...

输出文件<twopep.out>

Number of atoms: 160 Nuclear repulsion energy: 16119.3339631789 ... ==== Canonical RI-MP2 Module ==== Auxiliary basis set: cc-pvdz-ri Number of aux basis functions : 5600 Number of occupied orbitals : 304 Number of correlated orbitals : 224 Number of virtual orbitals : 1216 ... Hartree-Fock energy : -3934.0190238091 RI-MP2 correlation energy: -12.1537420632 Total RI-MP2 energy : -3946.1727658723 ••• Job elapsed time: 125.90 min

输出文件<HPi.out>

 Number of aton	ıs: 126	中心轨道能量
E(SCF)	/=	-2921.9089102982
E(CIM-5.5)	7	-9.2364321194 CIM 相关能
E(noncen-5.5)	_	-0.0054379038
E(corr-5.5)	=	-9.2418700232
E(Total)	=	-2931.1507803214
		1
Total elapsed tir	ne for	correlation energy: 10.86 min
		1

输出文件<HPi.out>

6.4.5 RI-MP2 梯度

输出文件< c27h32.out>

6.4.6 CIM-RI-MP2 梯度

输入文件 <HPi.gjf>

输出文件<HPi.out>

6.4.7 CIM-RI-MP2 结构优化

输入文件 <c27h32.gjf>

%mem=200GB %nprocshared=144 %nproccim=16 # rimp2/cc-pvdz opt=loose cim{aubs=cc-pvdz-ri full virt=0.05 dis=6.5} 0 1 C 12.28223600 -3.03811300 -1.08742200 ...

输出文件< c27h32-opt.out>

输出文件< c27h32-geometric.log>

6.4.8 CIM-DLPNO-CCSD(T) 单点能

输入文件 <HPi.gjf>

%mem=100GB %nprocshared=24 %nproccim=24 # dlpno-ccsd(t)/cc-pvdz cim{aubs=cc-pvdz-ri virt=0.03} ...

输出文件<HPi.out>

Correlation energy from cent	Correlation energy from central orbitals:	
Correlation energy from non	Correlation energy from non-central orbitals:	
Total correlation energy:	Total correlation energy:	
CIM Calculation Results:		
E(SCF) = -292	21.9089102982	
E(corr-5.5) = -9	.9947923913	
E(Total) = -2932	1.9037026895	
Total elapsed time for correla	84.59 min	

6.5 更多计算样例

本小节介绍更多更具挑战性的例子,其输入输出同样包含在 \$lsroot/example/CIM。

● C₁₀₄H₄₀N₂₄O₃₂ CIM-RIMP2/cc-pVTZ 单点能

使用 3 个节点,每节点 128 核计算,耗时 293 min (其中 HF 耗时 134 min)。

● C₁₃₀H₂₀₂N₂₈O₃₁S₁CIM-RIMP2/cc-pVTZ 单点能

蛋白质-配体结构 PDB ID: 6GQ5

使用单节点 80 核+8×V100 计算, 耗时 60+119 min (不包括 HF)。

● C₁₃₄H₉₂N₁₂O₆ CIM-RIMP2/cc-pVDZ 梯度

使用 4 个节点,每节点 128 核计算,耗时 99 min (其中 HF 耗时 18 min)。

● C₉₃H₄₈ CIM-RIMP2/def2-SVP 结构优化

使用7个节点,每节点128核计算,耗时7.3h。

● C₉₃H₄₈ CIM-DLPNO-CCSD(T)/def2-TZVP 单点能

使用单节点72 核计算,耗时10.3h。

第七章 PBC-GEBF 模块

LSQC 程序中的 PBC-GEBF 模块是对 GEBF 方法的一种拓展, 适用于周期性边界条件的体系。该模块可以对晶体进行半经验、HF、 DFT 和电子相关方法水平的单点能计算,并支持结构优化、频率计算, 以及红外强度、Raman 强度和核磁共振等性质的计算。

本章节介绍了与 PBC-GEBF 计算有关的关键词,以及一些实际的 PBC-GEBF 计算样例。

PBC-GEBF 子体系的计算目前依赖于 Gaussian 程序,您需要拥有合法的 Gaussian 软件并正确引用。此外,如果进行结构优化,您还需要参照第二章安装 ASE。

7.1 关键词

 \blacklozenge dis = r

关键词 dis 用于限制子体系的规模。子体系扩大会导致计算量增加,同时也提高计算精度。r 的单位为 Å,默认值为 4.0 (Å)。

 \blacklozenge maxsubfrag = *n*

关键词 maxsubfrag 同样用于限制子体系的规模。每个初始子体 系包含"块"的个数不会超过 n。默认值为 6。

♦ moresubs=2

添加更多含有两个"块"的子体系。为了计算精度,我们推荐使 用这个关键词。

◆ frag=link (默认)

自动分块方案。计算原子间连接度,一个分子分为一块。

◆ frag=read

自定义分块方案。需要提供<*.frg>文件(参考 4.2.3 小节)。 警告: PBC-GEBF 模块只支持 frag=link 和 frag=read,不支持其他分 块方式(包括 frag=auto、frag=conn 等)。

◆ opt 或 opt=all (默认)

晶体结构优化,优化原子坐标和晶胞参数。

♦ opt=ions

晶体结构优化,只优化原子坐标、固定晶胞参数。

♦ opt=h

晶体结构优化,只优化H原子坐标。

7.2 单胞能量

单胞能量计算是本模块的基础功能。以液体水盒子(H₂O)₁₆在 PBE/6-31G(d,p)水平的计算为例。

输入文件<wat.gjf>

%njobs=12 %nproc=2 %mem=5gb #n nbenbe/6-31g**					
#b bpebpel 0-218					
pbc-gebf { maxsubfrag=6 moresubs=2 [5d] }					
01					
0	1.413999981	2.312000043	5.021999909		
0	3.917000375	5.360999911	2.914000022		
•••••					
Н	5.389000108	1.500000042	2.591000038		
Н	4.313000281	0.591000038	2.831000062		
_	7.5130000114	0.0000000000	0.0000000000		
TV					
Tv Tv	0.0000000000	7.5130000114	0.0000000000		

输出文件<wat.txt>

..... PBC-GEBF energy per unit cell: PBEPBE = -1221.567425 U + P*V = -1221.567425 + 0.000000 PBC-GEBF task over on: Thu Jan 16 11:58:12 2025 Total CPU time: 0 days 0 hours 1 minutes 41.3 seconds. Total Wall time: 0 days 0 hours 25 minutes 22 seconds. Normal Termination of PBC-GEBF Program! Termination of LSQC program!

在 LSQC 程序的标准输出文件<*.txt>中可以看到,这个水盒子能 量为-1221.567425 a.u.,标准程序的计算结果为-1221.565618 a.u.。

PBC-GEBF 模块还可以高效地完成 post-HF 计算。这里以 NH₃ 晶体的 MP2 计算为例。

输入文件<NH3.gjf>

 #p MP2(fulldir)/cc-pVDZ					
pbc-gebf { frag=link dis=4.0 maxsubfrag=6 moresubs=2 }					
01 N 	1.1267048196	1.1271942484	1.1285585896		

69

输出文件<NH3.txt>

..... PBC-GEBF Energy per unit cell: RHF = -224.801239 MP2 = -225.588747 E(CORR) = -0.787508 U + P*V = -225.588747 + 0.000000 ENERGY = -225.588747 PBC-GEBF task over on: Tue Jan 18 10:36:23 2022 Total CPU time: 0 days 0 hours 0 minutes 17.0 seconds. Total Wall time: 0 days 0 hours 6 minutes 28 seconds. Normal Termination of PBC-GEBF Program!

可以看到,这个 NH3 晶体的单胞能量为-225.588747 a.u., 其中 HF 能量为-224.801239 a.u., 与标准程序的-224.801248 a.u.非常接近, 且 明显加速。

用 PBC-GEBF 计算 MP2 能量仅需要 6.5 分钟,而标准程序计算 HF 能量已耗费 34.9 分钟。

7.3 原子和晶矢上的力

力的计算是结构优化的基础。这里以1,7-octadiene 晶体为例。

输入文件<octadiene.gjf>。这里采用了自定义分块 frag=read。

... #p m062x/6-31g** force pbc-gebf { dis=4.0 frag=read maxsubfrag=4 moresubs=2 [5d] }

01 C	4.7973760000	6.0874630000	5.5137040000

输入文件<octadiene.frg>,这个文件的格式参见 4.2.3 小节。

1 0 (1,4,6) 2 0 (9,20) ...

输出文件<octadiene.txt>

7.4 晶体结构优化

PBC-GEBF 模块可以优化晶体的结构。默认功能为同时优化原子 坐标和晶胞参数(opt 或 opt=all),也可以固定晶胞参数优化原子坐标 (opt=ions),或者只优化 H 原子坐标(opt=h)。对于分子较大的体系, 可以采用 frag=read 降低计算量。

以CO2晶体为例。输入文件<CO2.gjf>

 #p pbe	epbe/6-31g* op	t em=gd3bj	
pbc-ge	ebf { frag=link di	s=4.0 maxsubf	rag=5 moresubs=2 }
01 C 	0.000000	0.000000	0.00000

输出文件<CO2.txt>

step	Time	Energy	fmax
0	21:04:35	-753.318016	1097.4
1	21:11:23	-753.591076	359.7
2	21:17:15	-753.633156	72.5
8	21:57:16	-753.645470	0.3

在 PBE-D3(BJ)/6-31G(d)水平, CO₂ 晶体的平衡晶胞参数 a = b =

 $c = 5.59 \text{ Å} \approx \alpha = \beta = \gamma = 90.0^{\circ}$.

对于 1,7-octadiene 晶体, 晶胞中含有较大分子, 可以进行分块 (frag=read)。具体分块文件见 6.3 节。

输入文件<octadiene.gjf>

 #p pber	obe/6-31g** em=gd	l3bj opt	
pbc-get	of { dis=4.0 frag=rea	d maxsubfrag=6 mc	presubs=2 }
01 C	2.3230990128	3.5991205454	6.8547650113

输出文件<octadiene.txt>

tep	Time	Energy	fmax
0	12:15:35	-625.707158	119.2
1	12:26:08	-625.642965	629.6
2	12:39:31	-625.705421	129.7
 26	17:52:53	-625.710206	0.9

在 PBE-D3(BJ)/6-31G(d)水平, 1,7-octadiene 晶体的平衡晶胞参数 a = 9.16 Å、b = 4.95 Å、c = 8.26 Å、 $\alpha = \beta = \gamma = 90.0^{\circ}$ 。

7.5 振动频率(红外光谱、拉曼光谱)

振动频率的计算是 PBC-GEBF 模块的基本功能。这里以 1,7-octadiene 晶体为例。

输入文件<octadiene.gjf>

 #p pbej	pbe/6-31g** em=gc	l3bj freq	
pbc-get	of {	d maxsubfrag=6 mc	oresubs=2 }
01 C	2.3230990128	3.5991205454	6.8547650113

输出文件<octadiene.txt>

 #freq				
- Frequencies	S -			
	4	5	6	
Frequencies	17.8252	21.5564	28.0698	
IR Inten	0.0175	0.0740	0.1609	
Raman Activ	0.9466	0.3473	1.2483	
Atom AN X	ΥZ	X Y Z	XYZ	
1 6 -0.01	0.04 0.12	0.08 0.14 0.03	-0.05 -0.05 0.05	
Thermal Correction to Gibbs Free Energy = 0.338535				
Termination of LS	QC program	1!		

7.6 核磁屏蔽常数

核磁屏蔽常数的计算是 PBC-GEBF 模块的基本功能。这里以 1,7-

octadiene 晶体为例。

输入文件<octadiene.gjf>

```
...
#p pbepbe/6-31g** em=gd3bj nmr
pbc-gebf { dis=4.0 frag=read maxsubfrag=6 moresubs=2 }
0 1
C 2.3230990128 3.5991205454 6.8547650113
...
```

输出文件<octadiene.txt>

如上所示, 编号为1的C原子核磁屏蔽常数为79.07 ppm。

第八章 PBC-CIM 模块

LSQC 中的 PBC-CIM 模块是对 CIM 方法的拓展, 支持对周期性 体系进行 (RI-)MP2, DLPNO-CCSD 以及 DLPNO-CCSD(T) 水平的 单点能计算。

本模块依赖于 CRYSTAL 进行 PBC-HF 计算,依赖于 ORCA 子程序进行子体系 DLPNO-CCSD(T) 计算。

8.1 关键词

> disl

构建 PBC-CIM 分子轨道域的截断距离,单位为Å。默认值为5.5 (Å)。与 CIM-MP2 一致,见6.1。

➤ aubs

设置 PBC-CIM 计算的 RI 辅助基函数。这是必须设置的!与 CIM-RI-MP2 一致,见 6.1。

> virt

设置 PAO 投影的截断,默认值是 0.05。与 CIM-MP2 一致,见 6.1。

PBC-CIM-RI-MP2 的输入样例:

%mem=10GB %nprocshared=20 # rimp2/cc-pvdz pbccim{disI=6} 0 1 C 0.0 0.0 0.0 0 0.0 0.0 1.15

8.2 MP2 和 DLPNO-CCSD(T)计算

8.2.1 MP2 参数

≻ nofr

不冻结核轨道,亦即所有占据轨道都是相关的。默认将能量低于 -3.0 a.u.的轨道设置为冻结的核轨道。

例:

%mem=10GB %nprocshared=20 # rimp2/cc-pvdz pbccim{nofr} 0 1 C 0.0 0.0 0.0 ...

8.2.2 DLPNO-CCSD(T)参数

≻ nofr

不冻结核轨道,亦即所有占据轨道都是相关的。默认将能量低于 -3.0 a.u.的轨道设置为冻结的核轨道。

➢ levelpno

对于 DLPNO 计算设置 PNO 构造的参数, levelpno 设置为 0, 1, 2 分别对应 ORCA 的 NormalPNO, TightPNO 和 VeryTightPNO.

ORCA: <u>https://www.kofo.mpg.de/en/research/services/orca</u>例:

%mem=10GB %nprocshared=20 # dlpno-ccsd(t)/cc-pvdz pbccim{nofr, levelpno=1} 0 1 C 0.0 0.0 0.0 ...

8.3 计算样例

8.3.1 PBC-CIM-RI-MP2 计算

● NaCl 片层

输入文件<nacl.gjf>

输入文件<INPUT_HF>

NACL	
CRYSTAL	
225	
5.62	
2	
11 0.0 0.0 0.0	
17 0.5 0.5 0.5	

输入文件<INPUT_WF>

[NEWK	
Į.	88	
	10	1
	LOCALWF	
į.	VALENCE	1

输出文件<nacl.out>

 E(SCF) E(Corr_raw) E(Dispair) E(Corr)	= = = =	-1242.9920136382 -0.5417584075 -0.0002661461 -0.5420245536
E(Total)	=	-1242.5340381918

● CO₂ 晶体

输入文件<CO2.gjf>

输入文件<INPUT_HF>

CO2_1_opt_000
Crystal
000
1
5.630000 5.630000 5.630000 90.000000 90.000000 90.000000

输入文件<INPUT_WF>

输出文件<CO2.out>

E(SCF)	=	-750.4536236559	
E(Corr_raw	/) =	-5.2158636237	
E(Dispair)	=	-0.2349510897	
E(Corr)	=	-5.4508147134	
E(Total)	=	-755.9044383694	

8.3.2 PBC-CIM-DLPNO-CCSD(T)计算

输入文件<nacl.gjf>

%mem=25GB %nprocshared=16 # dlpno-ccsd(t)/pob-tzvp-rev2 pbccim{ aubs=def2-tzvp-ri disl=5.5 }

输入文件<INPUT_HF>

NACL CRYSTAL 225 5.62 2 11 0.0 0.0 0.0 17 0.5 0.5 0.5 ENDgeom ...

输入文件<INPUT_WF>

输出文件<nacl.out>

 E(SCF) E(Corr_raw) E(Dispair) E(Corr)	= = =	-1242.9920136382 -0.5694009719 -0.0002520795 -0.5696530514
E(Corr) E(Total)	=	-0.5696530514 -1243.5616666896

引用

GEBF 模块的引用

使用本模块的结果应当引用

[1] W. Li, H. Dong, J. Ma, S. Li. Acc. Chem. Res. 2021, 54, 169–181.

[2] S. Li, W. Li, J. Ma. Acc. Chem. Res. 2014, 47, 2712–2720.

[3] S. Li, W. Li, T. Fang. J. Am. Chem. Soc. 2005, 127, 7215–7226.

[4] W. Li, S. Li, Y. Jiang. J. Phys. Chem. A 2007, 111, 2193.

[5] S. Li, W. Li, Y. Jiang, J. Ma, T. Fang, W. Hua, S. Hua, H. Dong, D. Zhao, K. Liao, W. Zou, Z. Ni, Y. Wang, X. Shen, B. Hong, Y.Zheng, H.Feng, J.Lin *LSQC Program*, Version 3.0. Nanjing University, Nanjing **2025**; see https://itcc.nju.edu.cn/lsqc/.

此外您应当使用合法的 Gaussian 软件并正确引用。更多信息请 参考 http://www.gaussian.com/。

CIM 模块的引用

使用本模块的结果应当引用

[1] S. Li, J. Shen, W. Li, Y. Jiang. J. Chem. Phys. 2006, 125, 74109.

[2] S. Li, J. Ma, Y. Jiang. J. Comput. Chem. 2002, 23, 237–244.

[3] W. Li, Y. Wang, Z. Ni, S. Li. Acc. Chem. Res. 2023, 56, 3462– 3474.

[4] Y. Zheng, Z. Ni, Y. Wang, W. Li, S. Li. J. Chem. Theory Comput.2024, 20, 3626-3636.

[5] S. Li, W. Li, Y. Jiang, J. Ma, T. Fang, W. Hua, S. Hua, H. Dong, D. Zhao, K. Liao, W. Zou, Z. Ni, Y. Wang, X. Shen, B. Hong, Y.Zheng, H.Feng, J.Lin *LSQC Program*, Version 3.0. Nanjing University, Nanjing **2025**; see https://itcc.nju.edu.en/lsqc/.

当前版本的电子积分计算使用了 Libcint 库,需要引用相关文献 [6] Q. Sun. J. Comput. Chem. 2015, 36, 1664–1671. 如果做了结构优化计算,还需要引用 geomeTRIC 相关文献 [7] LP. Wang, C. Song. J. Chem. Phys. 2016, 144, 214108.

PBC-GEBF 模块的引用

使用本模块的结果应当引用

[1] W. Li, H. Dong, J. Ma, S. Li. Acc. Chem. Res. 2021, 54, 169–181.

[2] T. Fang, W. Li, F. Gu, S. Li. J. Chem. Theory Comput. 2015, 11, 91.

[3] B. Hong, T. Fang, W. Li and S. Li. J. Chem. Phys. 2023, 158, 044117.

[4] S. Li, W. Li, Y. Jiang, J. Ma, T. Fang, W. Hua, S. Hua, H. Dong, D. Zhao, K. Liao, W. Zou, Z. Ni, Y. Wang, X. Shen, B. Hong, Y.Zheng, H.Feng, J.Lin *LSQC Program*, Version 3.0. Nanjing University, Nanjing **2025**; see <u>https://itcc.nju.edu.cn/lsqc/</u>.

此外您应当使用合法的 Gaussian 软件并正确引用。更多信息请参考 <u>http://www.gaussian.com/</u>。

如果做了结构优化计算,还需要引用:

[5] A. Larsen, J. Mortensen, et. al. J. Phys.: Condens. Matter 2017, 29, 273002.

PBC-CIM 模块的引用

使用本模块的结果应当引用

[1] S. Li, J. Shen, W. Li, Y. Jiang. J. Chem. Phys. 2006, 125, 74109.

[2] S. Li, J. Ma, Y. Jiang. J. Comput. Chem. 2002, 23, 237–244.

[3] Y. Wang, Z. Ni, W. Li, S. Li. J. Chem. Theory Comput. 2019, 15, 2933-2943

[4] Y. Wang, Z. Ni, F. Neese, W. Li, Y. Guo, S. Li. J. Chem. Theory Comput. 2022, 18, 6510-6521.

[5] W. Li, Y. Wang, Z. Ni, S. Li. Acc. Chem. Res. 2023, 56, 3462– 3474.

[6] S. Li, W. Li, Y. Jiang, J. Ma, T. Fang, W. Hua, S. Hua, H. Dong, D. Zhao, K. Liao, W. Zou, Z. Ni, Y. Wang, X. Shen, B. Hong, Y.Zheng, H.Feng, J.Lin *LSQC Program*, Version 3.0. Nanjing University, Nanjing **2025**; see https://itcc.nju.edu.en/lsqc/.

本模块的需要调用 CRYSTAL 进行 PBC-HF 计算。您应当使用合法 的 CRYSTAL 软件并正确引用。更多信息请参考 https://www.crystal.unito.it。

本模块还依赖于 PySCF, 需要引用:

[7] Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N.S. Blunt,
N.A. Bogdanov, G.H. Booth, J. Chen, Z.-H. Cui, J.J. Eriksen, Y. Gao, S.
Guo, J. Hermann, M.R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J.
Liu, N. Mardirossian, J.D. McClain, M. Motta, B. Mussard, H.Q. Pham,
A. Pulkin, W. Purwanto, P.J. Robinson, E. Ronca, E.R. Sayfutyarova, M.
Scheurer, H.F. Schurkus, J.E.T. Smith, C. Sun, S.-N. Sun, S. Upadhyay,
L.K. Wagner, X. Wang, A. White, J.D. Whitfield, M.J. Williamson, S.
Wouters, J. Yang, J.M. Yu, T. Zhu, T.C. Berkelbach, S. Sharma, A.Yu.
Sokolov, G.K.-L. Chan. J. Chem. Phys. 2020 153 024109.

CIM-DLPNO 模块的引用

使用 DLPNO 计算由 CIM 或 PBC-CIM 产生的子体系应当引用

[1] F. Neese, WIREs Comput. Mol. Sci. 2022, 12, e1606

[2] C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, *J. Chem. Phys.* **2016**, *144*, 024109

[3] Y. Guo, U. Becker, and F. Neese, J. Chem. Phys. 2018, 148,

[4] Z. Ni, Y. Guo, F. Neese, W. Li, and S. Li, *J. Chem. Theory Comput.* , *17*, 756

联系方式

LSQC 工作组

通讯地址:南京大学化学化工学院理论与计算化学研究所, 210023

电子邮件: <u>lsqc@nju.edu.cn</u>

官方网站: <u>http://itcc.nju.edu.cn/lsqc</u> 或扫描如下二维码

若使用软件过程中遇到困难或有建议提供,我们欢迎您的来件!

